Postupy: Definování obecného typu pomocí generování reflexe
Tento článek ukazuje, jak vytvořit jednoduchý obecný typ se dvěma parametry typu, jak použít omezení třídy, omezení rozhraní a zvláštní omezení pro parametry typu a jak vytvořit členy, které používají parametry typu třídy jako typy parametrů a návratové typy.
Důležité
Metoda není obecná jen proto, že patří obecnému typu a používá parametry typu daného typu. Metoda je obecná pouze v případě, že má svůj vlastní seznam parametrů typu. Většina metod obecných typů není obecná, jako v tomto příkladu. Příklad generování obecné metody naleznete v tématu Postupy: Definování obecné metody s Reflexe ion Emit.
Definování obecného typu
Definujte dynamické sestavení s názvem
GenericEmitExample1
. V tomto příkladu se sestavení spustí a uloží na disk, takže AssemblyBuilderAccess.RunAndSave je zadáno.AppDomain^ myDomain = AppDomain::CurrentDomain; AssemblyName^ myAsmName = gcnew AssemblyName( L"GenericEmitExample1" ); AssemblyBuilder^ myAssembly = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::RunAndSave );
AppDomain myDomain = AppDomain.CurrentDomain; AssemblyName myAsmName = new AssemblyName("GenericEmitExample1"); AssemblyBuilder myAssembly = myDomain.DefineDynamicAssembly(myAsmName, AssemblyBuilderAccess.RunAndSave);
Dim myDomain As AppDomain = AppDomain.CurrentDomain Dim myAsmName As New AssemblyName("GenericEmitExample1") Dim myAssembly As AssemblyBuilder = myDomain.DefineDynamicAssembly( _ myAsmName, _ AssemblyBuilderAccess.RunAndSave)
Definujte dynamický modul. Sestavení se skládá ze spustitelných modulů. Pro sestavení s jedním modulem je název modulu stejný jako název sestavení a název souboru je název modulu plus přípona.
ModuleBuilder^ myModule = myAssembly->DefineDynamicModule( myAsmName->Name, String::Concat( myAsmName->Name, L".dll" ) );
ModuleBuilder myModule = myAssembly.DefineDynamicModule(myAsmName.Name, myAsmName.Name + ".dll");
Dim myModule As ModuleBuilder = myAssembly.DefineDynamicModule( _ myAsmName.Name, _ myAsmName.Name & ".dll")
Definujte třídu. V tomto příkladu má třída název
Sample
.TypeBuilder^ myType = myModule->DefineType( L"Sample", TypeAttributes::Public );
TypeBuilder myType = myModule.DefineType("Sample", TypeAttributes.Public);
Dim myType As TypeBuilder = myModule.DefineType( _ "Sample", _ TypeAttributes.Public)
Definujte parametry obecného typu metody
Sample
předáním pole řetězců obsahujícího názvy parametrů metodě TypeBuilder.DefineGenericParameters. Tím se třída změní na obecný typ. Vrácená hodnota je pole GenericTypeParameterBuilder objektů představujících parametry typu, které lze použít ve vygenerovaném kódu.V následujícím kódu
Sample
se stane obecný typ s parametryTFirst
typu aTSecond
. Aby byl kód čitelnější, každý GenericTypeParameterBuilder se umístí do proměnné se stejným názvem jako parametr typu.array<String^>^typeParamNames = {L"TFirst",L"TSecond"}; array<GenericTypeParameterBuilder^>^typeParams = myType->DefineGenericParameters( typeParamNames ); GenericTypeParameterBuilder^ TFirst = typeParams[0]; GenericTypeParameterBuilder^ TSecond = typeParams[1];
string[] typeParamNames = {"TFirst", "TSecond"}; GenericTypeParameterBuilder[] typeParams = myType.DefineGenericParameters(typeParamNames); GenericTypeParameterBuilder TFirst = typeParams[0]; GenericTypeParameterBuilder TSecond = typeParams[1];
Dim typeParamNames() As String = {"TFirst", "TSecond"} Dim typeParams() As GenericTypeParameterBuilder = _ myType.DefineGenericParameters(typeParamNames) Dim TFirst As GenericTypeParameterBuilder = typeParams(0) Dim TSecond As GenericTypeParameterBuilder = typeParams(1)
Přidejte do parametrů typu zvláštní omezení. V tomto příkladu je parametr
TFirst
typu omezen na typy, které mají konstruktory bez parametrů a odkazovat na typy.TFirst->SetGenericParameterAttributes( GenericParameterAttributes::DefaultConstructorConstraint | GenericParameterAttributes::ReferenceTypeConstraint );
TFirst.SetGenericParameterAttributes( GenericParameterAttributes.DefaultConstructorConstraint | GenericParameterAttributes.ReferenceTypeConstraint);
TFirst.SetGenericParameterAttributes( _ GenericParameterAttributes.DefaultConstructorConstraint _ Or GenericParameterAttributes.ReferenceTypeConstraint)
Volitelně lze těmto parametrům typu přidat omezení rozhraní a třídy. V tomto příkladu je parametr
TFirst
typu omezen na typy, které jsou odvozeny od základní třídy reprezentované objektem Type obsažené v proměnnébaseType
a které implementují rozhraní, jejichž typy jsou obsaženy v proměnnýchinterfaceA
ainterfaceB
. Podívejte se na příklad kódu pro deklaraci a přiřazení těchto proměnných.array<Type^>^interfaceTypes = { interfaceA, interfaceB }; TSecond->SetInterfaceConstraints( interfaceTypes ); TSecond->SetBaseTypeConstraint( baseType );
TSecond.SetBaseTypeConstraint(baseType); Type[] interfaceTypes = {interfaceA, interfaceB}; TSecond.SetInterfaceConstraints(interfaceTypes);
TSecond.SetBaseTypeConstraint(baseType) Dim interfaceTypes() As Type = {interfaceA, interfaceB} TSecond.SetInterfaceConstraints(interfaceTypes)
Definujte pole. V tomto příkladu je typ pole určen parametrem
TFirst
typu . GenericTypeParameterBuilder odvozuje od Type, takže můžete použít parametry obecného typu kdekoli, kde lze použít typ.FieldBuilder^ exField = myType->DefineField("ExampleField", TFirst, FieldAttributes::Private);
FieldBuilder exField = myType.DefineField("ExampleField", TFirst, FieldAttributes.Private);
Dim exField As FieldBuilder = _ myType.DefineField("ExampleField", TFirst, _ FieldAttributes.Private)
Definujte metodu, která používá parametry typu obecného typu. Tyto metody nejsou obecné, pokud nemají vlastní seznamy parametrů typu. Následující kód definuje metodu
static
(Shared
v jazyce Visual Basic), která přebírá poleTFirst
a vracíList<TFirst>
(List(Of TFirst)
v jazyce Visual Basic) obsahující všechny prvky pole. Chcete-li definovat tuto metodu, je nutné vytvořit typList<TFirst>
voláním MakeGenericType definice obecného typu ,List<T>
. (Vynechá seT
při použití operátorutypeof
(GetType
v jazyce Visual Basic) k získání definice obecného typu.) Typ parametru MakeArrayType je vytvořen pomocí metody.Type^ listOf = List::typeid; Type^ listOfTFirst = listOf->MakeGenericType(TFirst); array<Type^>^ mParamTypes = { TFirst->MakeArrayType() }; MethodBuilder^ exMethod = myType->DefineMethod("ExampleMethod", MethodAttributes::Public | MethodAttributes::Static, listOfTFirst, mParamTypes);
Type listOf = typeof(List<>); Type listOfTFirst = listOf.MakeGenericType(TFirst); Type[] mParamTypes = {TFirst.MakeArrayType()}; MethodBuilder exMethod = myType.DefineMethod("ExampleMethod", MethodAttributes.Public | MethodAttributes.Static, listOfTFirst, mParamTypes);
Dim listOf As Type = GetType(List(Of )) Dim listOfTFirst As Type = listOf.MakeGenericType(TFirst) Dim mParamTypes() As Type = {TFirst.MakeArrayType()} Dim exMethod As MethodBuilder = _ myType.DefineMethod("ExampleMethod", _ MethodAttributes.Public Or MethodAttributes.Static, _ listOfTFirst, _ mParamTypes)
Vygenerujte tělo metody. Tělo metody se skládá ze tří opkódů, které načítají vstupní pole do zásobníku, volají
List<TFirst>
konstruktor, který vezmeIEnumerable<TFirst>
(což provede veškerou práci vložení vstupních prvků do seznamu) a vrátí (opouští nový List<T> objekt v zásobníku). Obtížnou částí generování tohoto kódu je získání konstruktoru.Metoda není podporována GetConstructor na , GenericTypeParameterBuildertakže není možné získat konstruktor
List<TFirst>
přímo. Nejprve je nutné získat konstruktor definiceList<T>
obecného typu a pak volat metodu, která ji převede na odpovídající konstruktor .List<TFirst>
Konstruktor použitý pro tento příklad kódu přebírá .
IEnumerable<T>
Všimněte si však, že toto není definice IEnumerable<T> obecného typu obecného rozhraní; místo toho musí být parametrT
typu zList<T>
nahrazen parametrem typu parametruT
IEnumerable<T>
. (Zdá se to matoucí pouze proto, že oba typy mají parametry typu s názvemT
. Proto tento příklad kódu používá názvyTFirst
aTSecond
.) Pokud chcete získat typ argumentu konstruktoru, začněte definicí obecného typuIEnumerable<T>
a volejte MakeGenericType s prvním parametremList<T>
obecného typu . Seznam argumentů konstruktoru musí být předán jako pole s pouze jedním argumentem v tomto případě.Poznámka:
Definice obecného typu se vyjadřuje jako
IEnumerable<>
při použití operátorutypeof
v jazyce C# neboIEnumerable(Of )
při použití operátoruGetType
v jazyce Visual Basic.Nyní je možné získat konstruktor
List<T>
voláním GetConstructor definice obecného typu. Chcete-li převést tento konstruktor na odpovídající konstruktorList<TFirst>
, předatList<TFirst>
a konstruktor zList<T>
do statické TypeBuilder.GetConstructor(Type, ConstructorInfo) metody.ILGenerator^ ilgen = exMethod->GetILGenerator(); Type^ ienumOf = IEnumerable::typeid; Type^ TfromListOf = listOf->GetGenericArguments()[0]; Type^ ienumOfT = ienumOf->MakeGenericType(TfromListOf); array<Type^>^ ctorArgs = {ienumOfT}; ConstructorInfo^ ctorPrep = listOf->GetConstructor(ctorArgs); ConstructorInfo^ ctor = TypeBuilder::GetConstructor(listOfTFirst, ctorPrep); ilgen->Emit(OpCodes::Ldarg_0); ilgen->Emit(OpCodes::Newobj, ctor); ilgen->Emit(OpCodes::Ret);
ILGenerator ilgen = exMethod.GetILGenerator(); Type ienumOf = typeof(IEnumerable<>); Type TfromListOf = listOf.GetGenericArguments()[0]; Type ienumOfT = ienumOf.MakeGenericType(TfromListOf); Type[] ctorArgs = {ienumOfT}; ConstructorInfo ctorPrep = listOf.GetConstructor(ctorArgs); ConstructorInfo ctor = TypeBuilder.GetConstructor(listOfTFirst, ctorPrep); ilgen.Emit(OpCodes.Ldarg_0); ilgen.Emit(OpCodes.Newobj, ctor); ilgen.Emit(OpCodes.Ret);
Dim ilgen As ILGenerator = exMethod.GetILGenerator() Dim ienumOf As Type = GetType(IEnumerable(Of )) Dim listOfTParams() As Type = listOf.GetGenericArguments() Dim TfromListOf As Type = listOfTParams(0) Dim ienumOfT As Type = ienumOf.MakeGenericType(TfromListOf) Dim ctorArgs() As Type = {ienumOfT} Dim ctorPrep As ConstructorInfo = _ listOf.GetConstructor(ctorArgs) Dim ctor As ConstructorInfo = _ TypeBuilder.GetConstructor(listOfTFirst, ctorPrep) ilgen.Emit(OpCodes.Ldarg_0) ilgen.Emit(OpCodes.Newobj, ctor) ilgen.Emit(OpCodes.Ret)
Vytvořte typ a soubor uložte.
Type^ finished = myType->CreateType(); myAssembly->Save( String::Concat( myAsmName->Name, L".dll" ) );
Type finished = myType.CreateType(); myAssembly.Save(myAsmName.Name+".dll");
Dim finished As Type = myType.CreateType() myAssembly.Save(myAsmName.Name & ".dll")
Vyvolá metodu.
ExampleMethod
není obecný, ale typ, do kterého patří, je obecný, takže k získání MethodInfo toho, co lze vyvolat, je nutné vytvořit vytvořený typ z definice typu proSample
. Konstruovaný typ používáExample
třídu, která splňuje omezeníTFirst
, protože se jedná o odkazový typ a má výchozí konstruktor bez parametrů aExampleDerived
třídu, která splňuje omezeníTSecond
. (Kód proExampleDerived
najdete v ukázkové části kódu.) Tyto dva typy se předají k MakeGenericType vytvoření vytvořeného typu. Pak MethodInfo se získá pomocí GetMethod metody.array<Type^>^ typeArgs = { Example::typeid, ExampleDerived::typeid }; Type^ constructed = finished->MakeGenericType(typeArgs); MethodInfo^ mi = constructed->GetMethod("ExampleMethod");
Type[] typeArgs = {typeof(Example), typeof(ExampleDerived)}; Type constructed = finished.MakeGenericType(typeArgs); MethodInfo mi = constructed.GetMethod("ExampleMethod");
Dim typeArgs() As Type = _ {GetType(Example), GetType(ExampleDerived)} Dim constructed As Type = finished.MakeGenericType(typeArgs) Dim mi As MethodInfo = constructed.GetMethod("ExampleMethod")
Následující kód vytvoří pole
Example
objektů, umístí toto pole do pole typu Object představující argumenty metody, které se mají vyvolat, a předá je metodě Invoke(Object, Object[]) . První argument Invoke metody je nulový odkaz, protože metoda jestatic
.array<Example^>^ input = { gcnew Example(), gcnew Example() }; array<Object^>^ arguments = { input }; List<Example^>^ listX = (List<Example^>^) mi->Invoke(nullptr, arguments); Console::WriteLine( "\nThere are {0} elements in the List<Example>.", listX->Count);
Example[] input = {new Example(), new Example()}; object[] arguments = {input}; List<Example> listX = (List<Example>) mi.Invoke(null, arguments); Console.WriteLine( "\nThere are {0} elements in the List<Example>.", listX.Count);
Dim input() As Example = {New Example(), New Example()} Dim arguments() As Object = {input} Dim listX As List(Of Example) = mi.Invoke(Nothing, arguments) Console.WriteLine(vbLf & _ "There are {0} elements in the List(Of Example).", _ listX.Count _ )
Příklad
Následující příklad kódu definuje třídu s názvem Sample
, spolu se základní třídou a dvěma rozhraními. Program definuje dva parametry obecného typu pro Sample
, převést jej na obecný typ. Parametry typu jsou jediná věc, která z obecného typu dělá. Program to ukazuje zobrazením testovací zprávy před a za definicí parametrů typu.
Parametr TSecond
typu slouží k předvedení omezení třídy a rozhraní pomocí základní třídy a rozhraní a parametr TFirst
typu slouží k předvedení zvláštních omezení.
Příklad kódu definuje pole a metodu pomocí parametrů typu třídy pro typ pole a pro parametr a návratový typ metody.
Sample
Po vytvoření třídy je vyvolána metoda.
Program obsahuje metodu, která obsahuje informace o obecném typu a metodu, která uvádí zvláštní omezení parametru typu. Tyto metody slouží k zobrazení informací o dokončené Sample
třídě.
Program uloží dokončený modul na disk jako GenericEmitExample1.dll
, takže jej můžete otevřít pomocí Ildasm.exe (IL Disassembler) a prozkoumat CIL pro Sample
třídu.
using namespace System;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
using namespace System::Collections::Generic;
// Dummy class to satisfy TFirst constraints.
//
public ref class Example {};
// Define a trivial base class and two trivial interfaces
// to use when demonstrating constraints.
//
public ref class ExampleBase {};
public interface class IExampleA {};
public interface class IExampleB {};
// Define a trivial type that can substitute for type parameter
// TSecond.
//
public ref class ExampleDerived : ExampleBase, IExampleA, IExampleB {};
// List the constraint flags. The GenericParameterAttributes
// enumeration contains two sets of attributes, variance and
// constraints. For this example, only constraints are used.
//
static void ListConstraintAttributes( Type^ t )
{
// Mask off the constraint flags.
GenericParameterAttributes constraints =
t->GenericParameterAttributes &
GenericParameterAttributes::SpecialConstraintMask;
if ((constraints & GenericParameterAttributes::ReferenceTypeConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" ReferenceTypeConstraint");
if ((constraints & GenericParameterAttributes::NotNullableValueTypeConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" NotNullableValueTypeConstraint");
if ((constraints & GenericParameterAttributes::DefaultConstructorConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" DefaultConstructorConstraint");
}
static void DisplayGenericParameters( Type^ t )
{
if (!t->IsGenericType)
{
Console::WriteLine( L"Type '{0}' is not generic." );
return;
}
if (!t->IsGenericTypeDefinition)
t = t->GetGenericTypeDefinition();
array<Type^>^ typeParameters = t->GetGenericArguments();
Console::WriteLine( L"\r\nListing {0} type parameters for type '{1}'.",
typeParameters->Length, t );
for each ( Type^ tParam in typeParameters )
{
Console::WriteLine( L"\r\nType parameter {0}:",
tParam->ToString() );
for each (Type^ c in tParam->GetGenericParameterConstraints())
{
if (c->IsInterface)
Console::WriteLine( L" Interface constraint: {0}", c);
else
Console::WriteLine( L" Base type constraint: {0}", c);
}
ListConstraintAttributes(tParam);
}
}
void main()
{
// Define a dynamic assembly to contain the sample type. The
// assembly will be run and also saved to disk, so
// AssemblyBuilderAccess.RunAndSave is specified.
//
AppDomain^ myDomain = AppDomain::CurrentDomain;
AssemblyName^ myAsmName = gcnew AssemblyName( L"GenericEmitExample1" );
AssemblyBuilder^ myAssembly = myDomain->DefineDynamicAssembly(
myAsmName, AssemblyBuilderAccess::RunAndSave );
// An assembly is made up of executable modules. For a single-
// module assembly, the module name and file name are the same
// as the assembly name.
//
ModuleBuilder^ myModule = myAssembly->DefineDynamicModule(
myAsmName->Name, String::Concat( myAsmName->Name, L".dll" ) );
// Get type objects for the base class trivial interfaces to
// be used as constraints.
//
Type^ baseType = ExampleBase::typeid;
Type^ interfaceA = IExampleA::typeid;
Type^ interfaceB = IExampleB::typeid;
// Define the sample type.
//
TypeBuilder^ myType = myModule->DefineType( L"Sample",
TypeAttributes::Public );
Console::WriteLine( L"Type 'Sample' is generic: {0}",
myType->IsGenericType );
// Define type parameters for the type. Until you do this,
// the type is not generic, as the preceding and following
// WriteLine statements show. The type parameter names are
// specified as an array of strings. To make the code
// easier to read, each GenericTypeParameterBuilder is placed
// in a variable with the same name as the type parameter.
//
array<String^>^typeParamNames = {L"TFirst",L"TSecond"};
array<GenericTypeParameterBuilder^>^typeParams =
myType->DefineGenericParameters( typeParamNames );
GenericTypeParameterBuilder^ TFirst = typeParams[0];
GenericTypeParameterBuilder^ TSecond = typeParams[1];
Console::WriteLine( L"Type 'Sample' is generic: {0}",
myType->IsGenericType );
// Apply constraints to the type parameters.
//
// A type that is substituted for the first parameter, TFirst,
// must be a reference type and must have a parameterless
// constructor.
TFirst->SetGenericParameterAttributes(
GenericParameterAttributes::DefaultConstructorConstraint |
GenericParameterAttributes::ReferenceTypeConstraint
);
// A type that is substituted for the second type
// parameter must implement IExampleA and IExampleB, and
// inherit from the trivial test class ExampleBase. The
// interface constraints are specified as an array
// containing the interface types.
array<Type^>^interfaceTypes = { interfaceA, interfaceB };
TSecond->SetInterfaceConstraints( interfaceTypes );
TSecond->SetBaseTypeConstraint( baseType );
// The following code adds a private field named ExampleField,
// of type TFirst.
FieldBuilder^ exField =
myType->DefineField("ExampleField", TFirst,
FieldAttributes::Private);
// Define a static method that takes an array of TFirst and
// returns a List<TFirst> containing all the elements of
// the array. To define this method it is necessary to create
// the type List<TFirst> by calling MakeGenericType on the
// generic type definition, generic<T> List.
// The parameter type is created by using the
// MakeArrayType method.
//
Type^ listOf = List::typeid;
Type^ listOfTFirst = listOf->MakeGenericType(TFirst);
array<Type^>^ mParamTypes = { TFirst->MakeArrayType() };
MethodBuilder^ exMethod =
myType->DefineMethod("ExampleMethod",
MethodAttributes::Public | MethodAttributes::Static,
listOfTFirst,
mParamTypes);
// Emit the method body.
// The method body consists of just three opcodes, to load
// the input array onto the execution stack, to call the
// List<TFirst> constructor that takes IEnumerable<TFirst>,
// which does all the work of putting the input elements into
// the list, and to return, leaving the list on the stack. The
// hard work is getting the constructor.
//
// The GetConstructor method is not supported on a
// GenericTypeParameterBuilder, so it is not possible to get
// the constructor of List<TFirst> directly. There are two
// steps, first getting the constructor of generic<T> List and then
// calling a method that converts it to the corresponding
// constructor of List<TFirst>.
//
// The constructor needed here is the one that takes an
// IEnumerable<T>. Note, however, that this is not the
// generic type definition of generic<T> IEnumerable; instead, the
// T from generic<T> List must be substituted for the T of
// generic<T> IEnumerable. (This seems confusing only because both
// types have type parameters named T. That is why this example
// uses the somewhat silly names TFirst and TSecond.) To get
// the type of the constructor argument, take the generic
// type definition generic<T> IEnumerable and
// call MakeGenericType with the first generic type parameter
// of generic<T> List. The constructor argument list must be passed
// as an array, with just one argument in this case.
//
// Now it is possible to get the constructor of generic<T> List,
// using GetConstructor on the generic type definition. To get
// the constructor of List<TFirst>, pass List<TFirst> and
// the constructor from generic<T> List to the static
// TypeBuilder.GetConstructor method.
//
ILGenerator^ ilgen = exMethod->GetILGenerator();
Type^ ienumOf = IEnumerable::typeid;
Type^ TfromListOf = listOf->GetGenericArguments()[0];
Type^ ienumOfT = ienumOf->MakeGenericType(TfromListOf);
array<Type^>^ ctorArgs = {ienumOfT};
ConstructorInfo^ ctorPrep = listOf->GetConstructor(ctorArgs);
ConstructorInfo^ ctor =
TypeBuilder::GetConstructor(listOfTFirst, ctorPrep);
ilgen->Emit(OpCodes::Ldarg_0);
ilgen->Emit(OpCodes::Newobj, ctor);
ilgen->Emit(OpCodes::Ret);
// Create the type and save the assembly.
Type^ finished = myType->CreateType();
myAssembly->Save( String::Concat( myAsmName->Name, L".dll" ) );
// Invoke the method.
// ExampleMethod is not generic, but the type it belongs to is
// generic, so in order to get a MethodInfo that can be invoked
// it is necessary to create a constructed type. The Example
// class satisfies the constraints on TFirst, because it is a
// reference type and has a default constructor. In order to
// have a class that satisfies the constraints on TSecond,
// this code example defines the ExampleDerived type. These
// two types are passed to MakeGenericMethod to create the
// constructed type.
//
array<Type^>^ typeArgs =
{ Example::typeid, ExampleDerived::typeid };
Type^ constructed = finished->MakeGenericType(typeArgs);
MethodInfo^ mi = constructed->GetMethod("ExampleMethod");
// Create an array of Example objects, as input to the generic
// method. This array must be passed as the only element of an
// array of arguments. The first argument of Invoke is
// null, because ExampleMethod is static. Display the count
// on the resulting List<Example>.
//
array<Example^>^ input = { gcnew Example(), gcnew Example() };
array<Object^>^ arguments = { input };
List<Example^>^ listX =
(List<Example^>^) mi->Invoke(nullptr, arguments);
Console::WriteLine(
"\nThere are {0} elements in the List<Example>.",
listX->Count);
DisplayGenericParameters(finished);
}
/* This code example produces the following output:
Type 'Sample' is generic: False
Type 'Sample' is generic: True
There are 2 elements in the List<Example>.
Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
Type parameter TFirst:
ReferenceTypeConstraint
DefaultConstructorConstraint
Type parameter TSecond:
Interface constraint: IExampleA
Interface constraint: IExampleB
Base type constraint: ExampleBase
*/
using System;
using System.Reflection;
using System.Reflection.Emit;
using System.Collections.Generic;
// Define a trivial base class and two trivial interfaces
// to use when demonstrating constraints.
//
public class ExampleBase {}
public interface IExampleA {}
public interface IExampleB {}
// Define a trivial type that can substitute for type parameter
// TSecond.
//
public class ExampleDerived : ExampleBase, IExampleA, IExampleB {}
public class Example
{
public static void Main()
{
// Define a dynamic assembly to contain the sample type. The
// assembly will not be run, but only saved to disk, so
// AssemblyBuilderAccess.Save is specified.
//
AppDomain myDomain = AppDomain.CurrentDomain;
AssemblyName myAsmName = new AssemblyName("GenericEmitExample1");
AssemblyBuilder myAssembly =
myDomain.DefineDynamicAssembly(myAsmName,
AssemblyBuilderAccess.RunAndSave);
// An assembly is made up of executable modules. For a single-
// module assembly, the module name and file name are the same
// as the assembly name.
//
ModuleBuilder myModule =
myAssembly.DefineDynamicModule(myAsmName.Name,
myAsmName.Name + ".dll");
// Get type objects for the base class trivial interfaces to
// be used as constraints.
//
Type baseType = typeof(ExampleBase);
Type interfaceA = typeof(IExampleA);
Type interfaceB = typeof(IExampleB);
// Define the sample type.
//
TypeBuilder myType =
myModule.DefineType("Sample", TypeAttributes.Public);
Console.WriteLine("Type 'Sample' is generic: {0}",
myType.IsGenericType);
// Define type parameters for the type. Until you do this,
// the type is not generic, as the preceding and following
// WriteLine statements show. The type parameter names are
// specified as an array of strings. To make the code
// easier to read, each GenericTypeParameterBuilder is placed
// in a variable with the same name as the type parameter.
//
string[] typeParamNames = {"TFirst", "TSecond"};
GenericTypeParameterBuilder[] typeParams =
myType.DefineGenericParameters(typeParamNames);
GenericTypeParameterBuilder TFirst = typeParams[0];
GenericTypeParameterBuilder TSecond = typeParams[1];
Console.WriteLine("Type 'Sample' is generic: {0}",
myType.IsGenericType);
// Apply constraints to the type parameters.
//
// A type that is substituted for the first parameter, TFirst,
// must be a reference type and must have a parameterless
// constructor.
TFirst.SetGenericParameterAttributes(
GenericParameterAttributes.DefaultConstructorConstraint |
GenericParameterAttributes.ReferenceTypeConstraint);
// A type that is substituted for the second type
// parameter must implement IExampleA and IExampleB, and
// inherit from the trivial test class ExampleBase. The
// interface constraints are specified as an array
// containing the interface types.
TSecond.SetBaseTypeConstraint(baseType);
Type[] interfaceTypes = {interfaceA, interfaceB};
TSecond.SetInterfaceConstraints(interfaceTypes);
// The following code adds a private field named ExampleField,
// of type TFirst.
FieldBuilder exField =
myType.DefineField("ExampleField", TFirst,
FieldAttributes.Private);
// Define a static method that takes an array of TFirst and
// returns a List<TFirst> containing all the elements of
// the array. To define this method it is necessary to create
// the type List<TFirst> by calling MakeGenericType on the
// generic type definition, List<T>. (The T is omitted with
// the typeof operator when you get the generic type
// definition.) The parameter type is created by using the
// MakeArrayType method.
//
Type listOf = typeof(List<>);
Type listOfTFirst = listOf.MakeGenericType(TFirst);
Type[] mParamTypes = {TFirst.MakeArrayType()};
MethodBuilder exMethod =
myType.DefineMethod("ExampleMethod",
MethodAttributes.Public | MethodAttributes.Static,
listOfTFirst,
mParamTypes);
// Emit the method body.
// The method body consists of just three opcodes, to load
// the input array onto the execution stack, to call the
// List<TFirst> constructor that takes IEnumerable<TFirst>,
// which does all the work of putting the input elements into
// the list, and to return, leaving the list on the stack. The
// hard work is getting the constructor.
//
// The GetConstructor method is not supported on a
// GenericTypeParameterBuilder, so it is not possible to get
// the constructor of List<TFirst> directly. There are two
// steps, first getting the constructor of List<T> and then
// calling a method that converts it to the corresponding
// constructor of List<TFirst>.
//
// The constructor needed here is the one that takes an
// IEnumerable<T>. Note, however, that this is not the
// generic type definition of IEnumerable<T>; instead, the
// T from List<T> must be substituted for the T of
// IEnumerable<T>. (This seems confusing only because both
// types have type parameters named T. That is why this example
// uses the somewhat silly names TFirst and TSecond.) To get
// the type of the constructor argument, take the generic
// type definition IEnumerable<T> (expressed as
// IEnumerable<> when you use the typeof operator) and
// call MakeGenericType with the first generic type parameter
// of List<T>. The constructor argument list must be passed
// as an array, with just one argument in this case.
//
// Now it is possible to get the constructor of List<T>,
// using GetConstructor on the generic type definition. To get
// the constructor of List<TFirst>, pass List<TFirst> and
// the constructor from List<T> to the static
// TypeBuilder.GetConstructor method.
//
ILGenerator ilgen = exMethod.GetILGenerator();
Type ienumOf = typeof(IEnumerable<>);
Type TfromListOf = listOf.GetGenericArguments()[0];
Type ienumOfT = ienumOf.MakeGenericType(TfromListOf);
Type[] ctorArgs = {ienumOfT};
ConstructorInfo ctorPrep = listOf.GetConstructor(ctorArgs);
ConstructorInfo ctor =
TypeBuilder.GetConstructor(listOfTFirst, ctorPrep);
ilgen.Emit(OpCodes.Ldarg_0);
ilgen.Emit(OpCodes.Newobj, ctor);
ilgen.Emit(OpCodes.Ret);
// Create the type and save the assembly.
Type finished = myType.CreateType();
myAssembly.Save(myAsmName.Name+".dll");
// Invoke the method.
// ExampleMethod is not generic, but the type it belongs to is
// generic, so in order to get a MethodInfo that can be invoked
// it is necessary to create a constructed type. The Example
// class satisfies the constraints on TFirst, because it is a
// reference type and has a default constructor. In order to
// have a class that satisfies the constraints on TSecond,
// this code example defines the ExampleDerived type. These
// two types are passed to MakeGenericMethod to create the
// constructed type.
//
Type[] typeArgs = {typeof(Example), typeof(ExampleDerived)};
Type constructed = finished.MakeGenericType(typeArgs);
MethodInfo mi = constructed.GetMethod("ExampleMethod");
// Create an array of Example objects, as input to the generic
// method. This array must be passed as the only element of an
// array of arguments. The first argument of Invoke is
// null, because ExampleMethod is static. Display the count
// on the resulting List<Example>.
//
Example[] input = {new Example(), new Example()};
object[] arguments = {input};
List<Example> listX =
(List<Example>) mi.Invoke(null, arguments);
Console.WriteLine(
"\nThere are {0} elements in the List<Example>.",
listX.Count);
DisplayGenericParameters(finished);
}
private static void DisplayGenericParameters(Type t)
{
if (!t.IsGenericType)
{
Console.WriteLine("Type '{0}' is not generic.");
return;
}
if (!t.IsGenericTypeDefinition)
{
t = t.GetGenericTypeDefinition();
}
Type[] typeParameters = t.GetGenericArguments();
Console.WriteLine("\nListing {0} type parameters for type '{1}'.",
typeParameters.Length, t);
foreach( Type tParam in typeParameters )
{
Console.WriteLine("\r\nType parameter {0}:", tParam.ToString());
foreach( Type c in tParam.GetGenericParameterConstraints() )
{
if (c.IsInterface)
{
Console.WriteLine(" Interface constraint: {0}", c);
}
else
{
Console.WriteLine(" Base type constraint: {0}", c);
}
}
ListConstraintAttributes(tParam);
}
}
// List the constraint flags. The GenericParameterAttributes
// enumeration contains two sets of attributes, variance and
// constraints. For this example, only constraints are used.
//
private static void ListConstraintAttributes(Type t)
{
// Mask off the constraint flags.
GenericParameterAttributes constraints =
t.GenericParameterAttributes & GenericParameterAttributes.SpecialConstraintMask;
if ((constraints & GenericParameterAttributes.ReferenceTypeConstraint)
!= GenericParameterAttributes.None)
{
Console.WriteLine(" ReferenceTypeConstraint");
}
if ((constraints & GenericParameterAttributes.NotNullableValueTypeConstraint)
!= GenericParameterAttributes.None)
{
Console.WriteLine(" NotNullableValueTypeConstraint");
}
if ((constraints & GenericParameterAttributes.DefaultConstructorConstraint)
!=GenericParameterAttributes.None)
{
Console.WriteLine(" DefaultConstructorConstraint");
}
}
}
/* This code example produces the following output:
Type 'Sample' is generic: False
Type 'Sample' is generic: True
There are 2 elements in the List<Example>.
Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
Type parameter TFirst:
ReferenceTypeConstraint
DefaultConstructorConstraint
Type parameter TSecond:
Interface constraint: IExampleA
Interface constraint: IExampleB
Base type constraint: ExampleBase
*/
Imports System.Reflection
Imports System.Reflection.Emit
Imports System.Collections.Generic
' Define a trivial base class and two trivial interfaces
' to use when demonstrating constraints.
'
Public Class ExampleBase
End Class
Public Interface IExampleA
End Interface
Public Interface IExampleB
End Interface
' Define a trivial type that can substitute for type parameter
' TSecond.
'
Public Class ExampleDerived
Inherits ExampleBase
Implements IExampleA, IExampleB
End Class
Public Class Example
Public Shared Sub Main()
' Define a dynamic assembly to contain the sample type. The
' assembly will not be run, but only saved to disk, so
' AssemblyBuilderAccess.Save is specified.
'
Dim myDomain As AppDomain = AppDomain.CurrentDomain
Dim myAsmName As New AssemblyName("GenericEmitExample1")
Dim myAssembly As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
myAsmName, _
AssemblyBuilderAccess.RunAndSave)
' An assembly is made up of executable modules. For a single-
' module assembly, the module name and file name are the same
' as the assembly name.
'
Dim myModule As ModuleBuilder = myAssembly.DefineDynamicModule( _
myAsmName.Name, _
myAsmName.Name & ".dll")
' Get type objects for the base class trivial interfaces to
' be used as constraints.
'
Dim baseType As Type = GetType(ExampleBase)
Dim interfaceA As Type = GetType(IExampleA)
Dim interfaceB As Type = GetType(IExampleB)
' Define the sample type.
'
Dim myType As TypeBuilder = myModule.DefineType( _
"Sample", _
TypeAttributes.Public)
Console.WriteLine("Type 'Sample' is generic: {0}", _
myType.IsGenericType)
' Define type parameters for the type. Until you do this,
' the type is not generic, as the preceding and following
' WriteLine statements show. The type parameter names are
' specified as an array of strings. To make the code
' easier to read, each GenericTypeParameterBuilder is placed
' in a variable with the same name as the type parameter.
'
Dim typeParamNames() As String = {"TFirst", "TSecond"}
Dim typeParams() As GenericTypeParameterBuilder = _
myType.DefineGenericParameters(typeParamNames)
Dim TFirst As GenericTypeParameterBuilder = typeParams(0)
Dim TSecond As GenericTypeParameterBuilder = typeParams(1)
Console.WriteLine("Type 'Sample' is generic: {0}", _
myType.IsGenericType)
' Apply constraints to the type parameters.
'
' A type that is substituted for the first parameter, TFirst,
' must be a reference type and must have a parameterless
' constructor.
TFirst.SetGenericParameterAttributes( _
GenericParameterAttributes.DefaultConstructorConstraint _
Or GenericParameterAttributes.ReferenceTypeConstraint)
' A type that is substituted for the second type
' parameter must implement IExampleA and IExampleB, and
' inherit from the trivial test class ExampleBase. The
' interface constraints are specified as an array
' containing the interface types.
TSecond.SetBaseTypeConstraint(baseType)
Dim interfaceTypes() As Type = {interfaceA, interfaceB}
TSecond.SetInterfaceConstraints(interfaceTypes)
' The following code adds a private field named ExampleField,
' of type TFirst.
Dim exField As FieldBuilder = _
myType.DefineField("ExampleField", TFirst, _
FieldAttributes.Private)
' Define a Shared method that takes an array of TFirst and
' returns a List(Of TFirst) containing all the elements of
' the array. To define this method it is necessary to create
' the type List(Of TFirst) by calling MakeGenericType on the
' generic type definition, List(Of T). (The T is omitted with
' the GetType operator when you get the generic type
' definition.) The parameter type is created by using the
' MakeArrayType method.
'
Dim listOf As Type = GetType(List(Of ))
Dim listOfTFirst As Type = listOf.MakeGenericType(TFirst)
Dim mParamTypes() As Type = {TFirst.MakeArrayType()}
Dim exMethod As MethodBuilder = _
myType.DefineMethod("ExampleMethod", _
MethodAttributes.Public Or MethodAttributes.Static, _
listOfTFirst, _
mParamTypes)
' Emit the method body.
' The method body consists of just three opcodes, to load
' the input array onto the execution stack, to call the
' List(Of TFirst) constructor that takes IEnumerable(Of TFirst),
' which does all the work of putting the input elements into
' the list, and to return, leaving the list on the stack. The
' hard work is getting the constructor.
'
' The GetConstructor method is not supported on a
' GenericTypeParameterBuilder, so it is not possible to get
' the constructor of List(Of TFirst) directly. There are two
' steps, first getting the constructor of List(Of T) and then
' calling a method that converts it to the corresponding
' constructor of List(Of TFirst).
'
' The constructor needed here is the one that takes an
' IEnumerable(Of T). Note, however, that this is not the
' generic type definition of IEnumerable(Of T); instead, the
' T from List(Of T) must be substituted for the T of
' IEnumerable(Of T). (This seems confusing only because both
' types have type parameters named T. That is why this example
' uses the somewhat silly names TFirst and TSecond.) To get
' the type of the constructor argument, take the generic
' type definition IEnumerable(Of T) (expressed as
' IEnumerable(Of ) when you use the GetType operator) and
' call MakeGenericType with the first generic type parameter
' of List(Of T). The constructor argument list must be passed
' as an array, with just one argument in this case.
'
' Now it is possible to get the constructor of List(Of T),
' using GetConstructor on the generic type definition. To get
' the constructor of List(Of TFirst), pass List(Of TFirst) and
' the constructor from List(Of T) to the static
' TypeBuilder.GetConstructor method.
'
Dim ilgen As ILGenerator = exMethod.GetILGenerator()
Dim ienumOf As Type = GetType(IEnumerable(Of ))
Dim listOfTParams() As Type = listOf.GetGenericArguments()
Dim TfromListOf As Type = listOfTParams(0)
Dim ienumOfT As Type = ienumOf.MakeGenericType(TfromListOf)
Dim ctorArgs() As Type = {ienumOfT}
Dim ctorPrep As ConstructorInfo = _
listOf.GetConstructor(ctorArgs)
Dim ctor As ConstructorInfo = _
TypeBuilder.GetConstructor(listOfTFirst, ctorPrep)
ilgen.Emit(OpCodes.Ldarg_0)
ilgen.Emit(OpCodes.Newobj, ctor)
ilgen.Emit(OpCodes.Ret)
' Create the type and save the assembly.
Dim finished As Type = myType.CreateType()
myAssembly.Save(myAsmName.Name & ".dll")
' Invoke the method.
' ExampleMethod is not generic, but the type it belongs to is
' generic, so in order to get a MethodInfo that can be invoked
' it is necessary to create a constructed type. The Example
' class satisfies the constraints on TFirst, because it is a
' reference type and has a default constructor. In order to
' have a class that satisfies the constraints on TSecond,
' this code example defines the ExampleDerived type. These
' two types are passed to MakeGenericMethod to create the
' constructed type.
'
Dim typeArgs() As Type = _
{GetType(Example), GetType(ExampleDerived)}
Dim constructed As Type = finished.MakeGenericType(typeArgs)
Dim mi As MethodInfo = constructed.GetMethod("ExampleMethod")
' Create an array of Example objects, as input to the generic
' method. This array must be passed as the only element of an
' array of arguments. The first argument of Invoke is
' Nothing, because ExampleMethod is Shared. Display the count
' on the resulting List(Of Example).
'
Dim input() As Example = {New Example(), New Example()}
Dim arguments() As Object = {input}
Dim listX As List(Of Example) = mi.Invoke(Nothing, arguments)
Console.WriteLine(vbLf & _
"There are {0} elements in the List(Of Example).", _
listX.Count _
)
DisplayGenericParameters(finished)
End Sub
Private Shared Sub DisplayGenericParameters(ByVal t As Type)
If Not t.IsGenericType Then
Console.WriteLine("Type '{0}' is not generic.")
Return
End If
If Not t.IsGenericTypeDefinition Then _
t = t.GetGenericTypeDefinition()
Dim typeParameters() As Type = t.GetGenericArguments()
Console.WriteLine(vbCrLf & _
"Listing {0} type parameters for type '{1}'.", _
typeParameters.Length, t)
For Each tParam As Type In typeParameters
Console.WriteLine(vbCrLf & "Type parameter {0}:", _
tParam.ToString())
For Each c As Type In tParam.GetGenericParameterConstraints()
If c.IsInterface Then
Console.WriteLine(" Interface constraint: {0}", c)
Else
Console.WriteLine(" Base type constraint: {0}", c)
End If
Next
ListConstraintAttributes(tParam)
Next tParam
End Sub
' List the constraint flags. The GenericParameterAttributes
' enumeration contains two sets of attributes, variance and
' constraints. For this example, only constraints are used.
'
Private Shared Sub ListConstraintAttributes(ByVal t As Type)
' Mask off the constraint flags.
Dim constraints As GenericParameterAttributes = _
t.GenericParameterAttributes And _
GenericParameterAttributes.SpecialConstraintMask
If (constraints And GenericParameterAttributes.ReferenceTypeConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" ReferenceTypeConstraint")
If (constraints And GenericParameterAttributes.NotNullableValueTypeConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" NotNullableValueTypeConstraint")
If (constraints And GenericParameterAttributes.DefaultConstructorConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" DefaultConstructorConstraint")
End Sub
End Class
' This code example produces the following output:
'
'Type 'Sample' is generic: False
'Type 'Sample' is generic: True
'
'There are 2 elements in the List(Of Example).
'
'Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
'
'Type parameter TFirst:
' ReferenceTypeConstraint
' DefaultConstructorConstraint
'
'Type parameter TSecond:
' Interface constraint: IExampleA
' Interface constraint: IExampleB
' Base type constraint: ExampleBase