Model Třída

Představuje výsledek trénování strojového učení.

Model je výsledkem trénování Run Služby Azure Machine Learning nebo jiného procesu trénování modelu mimo Azure. Model je možné zaregistrovat v pracovním prostoru, kde je reprezentován názvem a verzí, bez ohledu na to, jak je model vytvořen. Pomocí třídy Model můžete zabalit modely pro použití s Dockerem a nasadit je jako koncový bod v reálném čase, který je možné použít pro žádosti o odvozování.

Kompletní kurz ukazující, jak se modely vytvářejí, spravují a využívají, najdete v tématech trénování modelu klasifikace obrázků pomocí dat MNIST a scikit-learn pomocí služby Azure Machine Learning.

Konstruktor modelu.

Konstruktor Modelu slouží k načtení cloudové reprezentace objektu Modelu přidruženého k poskytnutému pracovnímu prostoru. Musí zadat název nebo ID.

Dědičnost
builtins.object
Model

Konstruktor

Model(workspace, name=None, id=None, tags=None, properties=None, version=None, run_id=None, model_framework=None, expand=True, **kwargs)

Parametry

Name Description
workspace
Vyžadováno

Objekt pracovního prostoru obsahující model, který se má načíst.

name
str

Název modelu, který se má načíst. Vrátí se nejnovější model se zadaným názvem, pokud existuje.

Default value: None
id
str

ID modelu, který se má načíst. Model se zadaným ID se vrátí, pokud existuje.

Default value: None
tags

Volitelný seznam značek použitých k filtrování vrácených výsledků Výsledky se filtrují na základě zadaného seznamu a hledají se buď podle klíče, nebo podle hodnoty [klíč, hodnota]. Například ['klíč', ['klíč2', 'hodnota klíče2']]

Default value: None
properties

Volitelný seznam vlastností použitých k filtrování vrácených výsledků. Výsledky se filtrují na základě zadaného seznamu a hledají se buď podle klíče, nebo podle hodnoty [klíč, hodnota]. Například ['klíč', ['klíč2', 'hodnota klíče2']]

Default value: None
version
int

Verze modelu, která se má vrátit. Pokud je zadaný společně s parametrem name , vrátí se konkrétní verze zadaného pojmenovaného modelu, pokud existuje. Pokud version je vynechán, vrátí se poslední verze modelu.

Default value: None
run_id
str

Volitelné ID použité k filtrování vrácených výsledků.

Default value: None
model_framework
str

Volitelný název architektury použitý k filtrování vrácených výsledků. Pokud je zadaný, vrátí se výsledky pro modely odpovídající zadané architektuře. Povolené hodnoty najdete v tématu Framework .

Default value: None
workspace
Vyžadováno

Objekt pracovního prostoru obsahující model, který se má načíst.

name
Vyžadováno
str

Název modelu, který se má načíst. Vrátí se nejnovější model se zadaným názvem, pokud existuje.

id
Vyžadováno
str

ID modelu, který se má načíst. Model se zadaným ID se vrátí, pokud existuje.

tags
Vyžadováno

Volitelný seznam značek použitých k filtrování vrácených výsledků Výsledky se filtrují na základě zadaného seznamu a hledají se buď podle klíče, nebo podle hodnoty [klíč, hodnota]. Například ['klíč', ['klíč2', 'hodnota klíče2']]

properties
Vyžadováno

Volitelný seznam vlastností použitých k filtrování vrácených výsledků. Výsledky se filtrují na základě zadaného seznamu a hledají se buď podle klíče, nebo podle hodnoty [klíč, hodnota]. Například ['klíč', ['klíč2', 'hodnota klíče2']]

version
Vyžadováno
int

Verze modelu, která se má vrátit. Pokud je zadaný společně s parametrem name , vrátí se konkrétní verze zadaného pojmenovaného modelu, pokud existuje. Pokud version je vynechán, vrátí se poslední verze modelu.

run_id
Vyžadováno
str

Volitelné ID použité k filtrování vrácených výsledků.

model_framework
Vyžadováno
str

Volitelný název architektury použitý k filtrování vrácených výsledků. Pokud je zadaný, vrátí se výsledky pro modely odpovídající zadané architektuře. Povolené hodnoty najdete v tématu Framework .

expand

Pokud je true, vrátí modely se všemi dílčími vlastnostmi vyplněnými, například spuštěním, datovou sadou a experimentem.

Default value: True

Poznámky

Konstruktor Modelu se používá k načtení cloudové reprezentace objektu Modelu přidruženého k zadanému pracovnímu prostoru. Pro načtení modelů je potřeba zadat alespoň název nebo ID, ale existují i další možnosti filtrování, včetně značek, vlastností, verze, ID spuštění a architektury.


   from azureml.core.model import Model
   model = Model(ws, 'my_model_name')

Následující ukázka ukazuje, jak načíst konkrétní verzi modelu.


   from azureml.core.model import Model
   model = Model(ws, 'my_model_name', version=1)

Registrace modelu vytvoří logický kontejner pro jeden nebo více souborů, které tvoří váš model. Kromě obsahu samotného souboru modelu ukládá registrovaný model také metadata modelu, včetně popisu modelu, značek a informací o architektuře, které jsou užitečné při správě a nasazování modelu v pracovním prostoru. Pomocí značek můžete například kategorizovat modely a použít filtry při výpisu modelů v pracovním prostoru. Po registraci si pak můžete stáhnout nebo nasadit zaregistrovaný model a získat všechny zaregistrované soubory a metadata.

Následující ukázka ukazuje, jak zaregistrovat model určující značky a popis.


   from azureml.core.model import Model

   model = Model.register(model_path="sklearn_regression_model.pkl",
                          model_name="sklearn_regression_model",
                          tags={'area': "diabetes", 'type': "regression"},
                          description="Ridge regression model to predict diabetes",
                          workspace=ws)

Úplná ukázka je k dispozici od https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local-advanced.ipynb

Následující ukázka ukazuje, jak zaregistrovat model určující architekturu, vstupní a výstupní datové sady a konfiguraci prostředků.


   import sklearn

   from azureml.core import Model
   from azureml.core.resource_configuration import ResourceConfiguration


   model = Model.register(workspace=ws,
                          model_name='my-sklearn-model',                # Name of the registered model in your workspace.
                          model_path='./sklearn_regression_model.pkl',  # Local file to upload and register as a model.
                          model_framework=Model.Framework.SCIKITLEARN,  # Framework used to create the model.
                          model_framework_version=sklearn.__version__,  # Version of scikit-learn used to create the model.
                          sample_input_dataset=input_dataset,
                          sample_output_dataset=output_dataset,
                          resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5),
                          description='Ridge regression model to predict diabetes progression.',
                          tags={'area': 'diabetes', 'type': 'regression'})

   print('Name:', model.name)
   print('Version:', model.version)

V části Variables (Proměnné ) jsou uvedeny atributy místní reprezentace objektu cloudového modelu. Tyto proměnné by měly být považovány za jen pro čtení. Změna jejich hodnot se neprojeví v odpovídajícím cloudovém objektu.

Proměnné

Name Description
created_by

Uživatel, který model vytvořil.

created_time

Kdy byl model vytvořen.

azureml.core.Model.description

Popis objektu Model.

azureml.core.Model.id

ID modelu. Má podobu <názvu> modelu:<verze> modelu.

mime_type
str

Typ mime Modelu.

azureml.core.Model.name

Název modelu.

model_framework
str

Architektura modelu.

model_framework_version
str

Verze architektury modelu.

azureml.core.Model.tags

Slovník značek pro objekt Model.

azureml.core.Model.properties

Slovník vlastností klíčové hodnoty pro model. Tyto vlastnosti nelze po registraci změnit, je však možné přidat nové páry hodnot klíčů.

unpack

Určuje, jestli je potřeba model rozbalit (zrušit) při přetažení do místního kontextu.

url
str

Umístění adresy URL modelu.

azureml.core.Model.version

Verze modelu.

azureml.core.Model.workspace

Pracovní prostor obsahující model.

azureml.core.Model.experiment_name

Název experimentu, který vytvořil model.

azureml.core.Model.run_id

ID spuštění, které vytvořilo model.

parent_id
str

ID nadřazeného modelu modelu.

derived_model_ids

Seznam ID modelů odvozených z tohoto modelu.

resource_configuration

ResourceConfiguration pro tento model. Používá se k profilaci.

Metody

add_dataset_references

Přidružte poskytnuté datové sady k tomuto modelu.

add_properties

Přidejte páry hodnot klíčů do slovníku vlastností tohoto modelu.

add_tags

Přidejte páry hodnot klíčů do slovníku značek tohoto modelu.

delete

Odstraňte tento model z jeho přidruženého pracovního prostoru.

deploy

Nasaďte webovou službu z nuly nebo více Model objektů.

Výsledná webová služba je koncový bod v reálném čase, který lze použít pro žádosti o odvozování. Funkce Model deploy je podobná deploy funkci Webservice třídy, ale neregistruje modely. Pokud máte objekty modelu, které jsou už zaregistrované, použijte funkci Model deploy .

deserialize

Převede objekt JSON na objekt modelu.

Převod se nezdaří, pokud zadaný pracovní prostor není pracovním prostorem, se kterým je model zaregistrovaný.

download

Stáhněte model do cílového adresáře místního systému souborů.

get_model_path

Vraťte cestu k modelu.

Funkce vyhledá model v následujících umístěních.

Pokud version je hodnota None:

  1. Stažení ze vzdáleného úložiště do mezipaměti (pokud je k dispozici pracovní prostor)
  2. Načtení z mezipaměti azureml-models/$MODEL_NAME/$LATEST_VERSION/
  3. ./$MODEL_NAME

Pokud version není žádná:

  1. Načtení z mezipaměti azureml-models/$MODEL_NAME/$SPECIFIED_VERSION/
  2. Stažení ze vzdáleného úložiště do mezipaměti (pokud je k dispozici pracovní prostor)
get_sas_urls

Vrátí slovník párů klíč-hodnota obsahující názvy souborů a odpovídající adresy URL SAS.

list

Načte seznam všech modelů přidružených k zadanému pracovnímu prostoru s volitelnými filtry.

package

Vytvořte balíček modelu ve formě image Dockeru nebo kontextu sestavení Dockerfile.

print_configuration

Vytiskněte konfiguraci uživatele.

profile

Profiluje model a získá doporučení k požadavkům na prostředky.

Jedná se o dlouhotrvající operaci, která může v závislosti na velikosti datové sady trvat až 25 minut.

register

Zaregistrujte model v poskytnutém pracovním prostoru.

remove_tags

Odeberte zadané klíče ze slovníku značek tohoto modelu.

serialize

Převeďte tento model na serializovaný slovník JSON.

update

Proveďte místní aktualizaci modelu.

Stávající hodnoty zadaných parametrů se nahradí.

update_tags_properties

Proveďte aktualizaci značek a vlastností modelu.

add_dataset_references

Přidružte poskytnuté datové sady k tomuto modelu.

add_dataset_references(datasets)

Parametry

Name Description
datasets
Vyžadováno
list[tuple(<xref:str :> (Dataset nebo DatasetSnapshot))]

Seznam řazených kolekcí členů představující dvojici účelu datové sady a objektu Dataset.

Výjimky

Typ Description

add_properties

Přidejte páry hodnot klíčů do slovníku vlastností tohoto modelu.

add_properties(properties)

Parametry

Name Description
properties
Vyžadováno
dict(<xref:str : str>)

Slovník vlastností, které chcete přidat.

Výjimky

Typ Description

add_tags

Přidejte páry hodnot klíčů do slovníku značek tohoto modelu.

add_tags(tags)

Parametry

Name Description
tags
Vyžadováno
dict(<xref:{str : str}>)

Slovník značek, které se mají přidat.

Výjimky

Typ Description

delete

Odstraňte tento model z jeho přidruženého pracovního prostoru.

delete()

Výjimky

Typ Description

deploy

Nasaďte webovou službu z nuly nebo více Model objektů.

Výsledná webová služba je koncový bod v reálném čase, který lze použít pro žádosti o odvozování. Funkce Model deploy je podobná deploy funkci Webservice třídy, ale neregistruje modely. Pokud máte objekty modelu, které jsou už zaregistrované, použijte funkci Model deploy .

static deploy(workspace, name, models, inference_config=None, deployment_config=None, deployment_target=None, overwrite=False, show_output=False)

Parametry

Name Description
workspace
Vyžadováno

A Workspace objektu, který chcete přidružit webovou službu.

name
Vyžadováno
str

Název, který má dát nasazené službě. Musí být jedinečné pro pracovní prostor, musí se skládat pouze z malých písmen, číslic nebo pomlček, musí začínat písmenem a musí mít délku 3 až 32 znaků.

models
Vyžadováno

Seznam objektů modelu. Může být prázdný seznam.

inference_config

InferenceConfig Objekt použitý k určení požadovaných vlastností modelu.

Default value: None
deployment_config

A WebserviceDeploymentConfiguration slouží ke konfiguraci webové služby. Pokud ho nezadáte, použije se prázdný objekt konfigurace na základě požadovaného cíle.

Default value: None
deployment_target

A ComputeTarget , do které nasadíte webovou službu. Vzhledem k tomu, že Azure Container Instances nemá žádný přidružený ComputeTargetparametr , ponechte tento parametr pro nasazení do Azure Container Instances jako Žádný.

Default value: None
overwrite

Určuje, jestli se má přepsat existující služba, pokud již existuje služba se zadaným názvem.

Default value: False
show_output

Určuje, jestli se má zobrazit průběh nasazení služby.

Default value: False

Návraty

Typ Description

Objekt Webservice odpovídající nasazené webové službě.

Výjimky

Typ Description

deserialize

Převede objekt JSON na objekt modelu.

Převod se nezdaří, pokud zadaný pracovní prostor není pracovním prostorem, se kterým je model zaregistrovaný.

static deserialize(workspace, model_payload)

Parametry

Name Description
workspace
Vyžadováno

Objekt pracovního prostoru, ve který je model zaregistrovaný.

model_payload
Vyžadováno

Objekt JSON, který se má převést na modelový objekt.

Návraty

Typ Description

Reprezentace modelu poskytnutého objektu JSON.

Výjimky

Typ Description

download

Stáhněte model do cílového adresáře místního systému souborů.

download(target_dir='.', exist_ok=False, exists_ok=None)

Parametry

Name Description
target_dir
str

Cesta k adresáři, ve kterém chcete stáhnout model. Výchozí hodnota je "."

Default value: .
exist_ok

Určuje, jestli se mají nahradit stažené adresáře nebo soubory, pokud existují. Výchozí hodnota je False.

Default value: False
exists_ok

ZASTARALÉ. Použijte exist_ok.

Default value: None

Návraty

Typ Description
str

Cesta k souboru nebo složce modelu.

Výjimky

Typ Description

get_model_path

Vraťte cestu k modelu.

Funkce vyhledá model v následujících umístěních.

Pokud version je hodnota None:

  1. Stažení ze vzdáleného úložiště do mezipaměti (pokud je k dispozici pracovní prostor)
  2. Načtení z mezipaměti azureml-models/$MODEL_NAME/$LATEST_VERSION/
  3. ./$MODEL_NAME

Pokud version není žádná:

  1. Načtení z mezipaměti azureml-models/$MODEL_NAME/$SPECIFIED_VERSION/
  2. Stažení ze vzdáleného úložiště do mezipaměti (pokud je k dispozici pracovní prostor)
static get_model_path(model_name, version=None, _workspace=None)

Parametry

Name Description
model_name
Vyžadováno
str

Název modelu, který se má načíst.

version
int

Verze modelu, která se má načíst. Výchozí hodnota je nejnovější verze.

Default value: None
_workspace

Pracovní prostor, ze který chcete načíst model. Nelze použít vzdáleně. Pokud není zadaný, prohledá se pouze místní mezipaměť.

Default value: None

Návraty

Typ Description
str

Cesta k modelu na disku.

Výjimky

Typ Description

get_sas_urls

Vrátí slovník párů klíč-hodnota obsahující názvy souborů a odpovídající adresy URL SAS.

get_sas_urls()

Návraty

Typ Description

Slovník dvojic klíč-hodnota obsahující názvy souborů a odpovídající adresy URL SAS

Výjimky

Typ Description

list

Načte seznam všech modelů přidružených k zadanému pracovnímu prostoru s volitelnými filtry.

static list(workspace, name=None, tags=None, properties=None, run_id=None, latest=False, dataset_id=None, expand=True, page_count=255, model_framework=None)

Parametry

Name Description
workspace
Vyžadováno

Objekt pracovního prostoru, ze které se mají načítat modely.

name
str

Pokud je zadán, vrátí pouze modely se zadaným názvem, pokud existuje.

Default value: None
tags

Bude filtrovat na základě zadaného seznamu, a to buď podle klíče, nebo podle hodnoty [klíč, hodnota]. Například ['klíč', ['klíč2', 'hodnota klíče2']]

Default value: None
properties

Bude filtrovat na základě zadaného seznamu, a to buď podle klíče, nebo podle hodnoty [klíč, hodnota]. Například ['klíč', ['klíč2', 'hodnota klíče2']]

Default value: None
run_id
str

Bude filtrovat na základě zadaného ID spuštění.

Default value: None
latest

Pokud je true, vrátí pouze modely s nejnovější verzí.

Default value: False
dataset_id
str

Bude filtrovat na základě zadaného ID datové sady.

Default value: None
expand

Pokud je true, vrátí modely se všemi dílčími vlastnostmi vyplněnými, například spuštěním, datovou sadou a experimentem. Nastavení této hodnoty na hodnotu false by mělo urychlit dokončování metody list() v případě mnoha modelů.

Default value: True
page_count
int

Počet položek, které se mají na stránce načíst. Aktuálně podporují hodnoty až 255. Výchozí hodnota je 255.

Default value: 255
model_framework
str

Pokud je k dispozici, vrátí pouze modely se zadanou architekturou, pokud existuje.

Default value: None

Návraty

Typ Description

Seznam modelů, volitelně filtrovaných.

Výjimky

Typ Description

package

Vytvořte balíček modelu ve formě image Dockeru nebo kontextu sestavení Dockerfile.

static package(workspace, models, inference_config=None, generate_dockerfile=False, image_name=None, image_label=None)

Parametry

Name Description
workspace
Vyžadováno

Pracovní prostor, ve kterém chcete balíček vytvořit.

models
Vyžadováno

Seznam objektů modelu, které se mají zahrnout do balíčku. Může být prázdný seznam.

inference_config

InferenceConfig Objekt pro konfiguraci operace modelů. Musí obsahovat objekt Prostředí.

Default value: None
generate_dockerfile

Jestli chcete vytvořit soubor Dockerfile, který je možné spustit místně místo vytváření image.

Default value: False
image_name
str

Při vytváření image se zobrazí název výsledného obrázku.

Default value: None
image_label
str

Popisek výsledného obrázku při vytváření obrázku

Default value: None

Návraty

Typ Description

A ModelPackage objekt.

Výjimky

Typ Description

print_configuration

Vytiskněte konfiguraci uživatele.

static print_configuration(models, inference_config, deployment_config, deployment_target)

Parametry

Name Description
models
Vyžadováno

Seznam objektů modelu. Může být prázdný seznam.

inference_config
Vyžadováno

InferenceConfig Objekt použitý k určení požadovaných vlastností modelu.

deployment_config
Vyžadováno

A WebserviceDeploymentConfiguration slouží ke konfiguraci webové služby.

deployment_target
Vyžadováno

A ComputeTarget , do které nasadíte webovou službu.

Výjimky

Typ Description

profile

Profiluje model a získá doporučení k požadavkům na prostředky.

Jedná se o dlouhotrvající operaci, která může v závislosti na velikosti datové sady trvat až 25 minut.

static profile(workspace, profile_name, models, inference_config, input_dataset, cpu=None, memory_in_gb=None, description=None)

Parametry

Name Description
workspace
Vyžadováno

A Workspace objekt, ve kterém chcete profilovat model.

profile_name
Vyžadováno
str

Název spuštění profilace.

models
Vyžadováno

Seznam objektů modelu. Může být prázdný seznam.

inference_config
Vyžadováno

InferenceConfig Objekt použitý k určení požadovaných vlastností modelu.

input_dataset
Vyžadováno

Vstupní datová sada pro profilaci. Vstupní datová sada by měla mít jeden sloupec a ukázkové vstupy by měly být ve formátu řetězce.

cpu

Počet procesorových jader, která se mají použít v největší testovací instanci. Aktuálně podporují hodnoty až 3,5.

Default value: None
memory_in_gb

Velikost paměti (v GB), která se má použít v největší testovací instanci. Může být desetinná čárka. Aktuálně podporují hodnoty až 15.0.

Default value: None
description
str

Popis, který se má přidružit ke spuštění profilace

Default value: None

Návraty

Typ Description

Výjimky

Typ Description
<xref:azureml.exceptions.WebserviceException>, <xref:azureml.exceptions.UserErrorException>

register

Zaregistrujte model v poskytnutém pracovním prostoru.

static register(workspace, model_path, model_name, tags=None, properties=None, description=None, datasets=None, model_framework=None, model_framework_version=None, child_paths=None, sample_input_dataset=None, sample_output_dataset=None, resource_configuration=None)

Parametry

Name Description
workspace
Vyžadováno

Pracovní prostor pro registraci modelu.

model_path
Vyžadováno
str

Cesta v místním systému souborů, kde se nacházejí prostředky modelu. Může se jednat o přímý ukazatel na jeden soubor nebo složku. Při odkazování na složku child_paths lze parametr použít k určení jednotlivých souborů, které se mají spojit jako objekt Model, místo použití celého obsahu složky.

model_name
Vyžadováno
str

Název pro registraci modelu.

tags
dict(<xref:{str : str}>)

Volitelný slovník značek klíčových hodnot, které se přiřazují k modelu.

Default value: None
properties
dict(<xref:{str : str}>)

Volitelný slovník vlastností hodnoty klíče, který se má přiřadit k modelu. Tyto vlastnosti nelze po vytvoření modelu změnit, je však možné přidat nové páry hodnot klíčů.

Default value: None
description
str

Textový popis modelu.

Default value: None
datasets

Seznam řazených kolekcí členů, kde první prvek popisuje vztah datové sady a modelu a druhý prvek je datová sada.

Default value: None
model_framework
str

Architektura registrovaného modelu. Použití konstant podporovaných systémem z Framework třídy umožňuje zjednodušené nasazení pro některé oblíbené architektury.

Default value: None
model_framework_version
str

Verze architektury registrovaného modelu.

Default value: None
child_paths

Pokud je k dispozici ve spojení s do model_path složky, do objektu Model budou seskupené pouze zadané soubory.

Default value: None
sample_input_dataset

Ukázková vstupní datová sada pro zaregistrovaný model

Default value: None
sample_output_dataset

Ukázková výstupní datová sada pro zaregistrovaný model

Default value: None
resource_configuration

Konfigurace prostředků pro spuštění zaregistrovaného modelu.

Default value: None

Návraty

Typ Description

Zaregistrovaný objekt modelu.

Výjimky

Typ Description

Poznámky

Kromě obsahu samotného souboru modelu registrovaný model ukládá také metadata modelu, včetně popisu modelu, značek a informací o architektuře, což je užitečné při správě a nasazování modelu v pracovním prostoru. Pomocí značek můžete například kategorizovat modely a použít filtry při výpisu modelů v pracovním prostoru.

Následující ukázka ukazuje, jak zaregistrovat model se značkami a popisem.


   from azureml.core.model import Model

   model = Model.register(model_path="sklearn_regression_model.pkl",
                          model_name="sklearn_regression_model",
                          tags={'area': "diabetes", 'type': "regression"},
                          description="Ridge regression model to predict diabetes",
                          workspace=ws)

Úplná ukázka je k dispozici na https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local-advanced.ipynb

Pokud máte model vytvořený jako výsledek spuštění experimentu, můžete ho zaregistrovat přímo ze spuštěného objektu, aniž byste ho nejdřív stáhli do místního souboru. K tomu použijte metodu register_model , jak je popsáno ve Run třídě .

remove_tags

Odeberte zadané klíče ze slovníku značek tohoto modelu.

remove_tags(tags)

Parametry

Name Description
tags
Vyžadováno

Seznam klíčů, které se mají odebrat

Výjimky

Typ Description

serialize

Převeďte tento model na serializovaný slovník JSON.

serialize()

Návraty

Typ Description

Reprezentace json tohoto modelu

Výjimky

Typ Description

update

Proveďte místní aktualizaci modelu.

Stávající hodnoty zadaných parametrů se nahradí.

update(tags=None, description=None, sample_input_dataset=None, sample_output_dataset=None, resource_configuration=None)

Parametry

Name Description
tags
dict(<xref:{str : str}>)

Slovník značek, pomocí které se má model aktualizovat. Tyto značky nahrazují existující značky modelu.

Default value: None
description
str

Nový popis, který se má použít pro model. Tento název nahradí existující název.

Default value: None
sample_input_dataset

Ukázková vstupní datová sada, která se má použít pro zaregistrovaný model. Tato ukázková vstupní datová sada nahradí existující datovou sadu.

Default value: None
sample_output_dataset

Ukázková výstupní datová sada, která se má použít pro zaregistrovaný model. Tato ukázková výstupní datová sada nahradí existující datovou sadu.

Default value: None
resource_configuration

Konfigurace prostředku, která se má použít ke spuštění zaregistrovaného modelu.

Default value: None

Výjimky

Typ Description

update_tags_properties

Proveďte aktualizaci značek a vlastností modelu.

update_tags_properties(add_tags=None, remove_tags=None, add_properties=None)

Parametry

Name Description
add_tags
dict(<xref:{str : str}>)

Slovník značek, které chcete přidat.

Default value: None
remove_tags

Seznam názvů značek, které chcete odebrat.

Default value: None
add_properties
dict(<xref:{str : str}>)

Slovník vlastností, které chcete přidat.

Default value: None

Výjimky

Typ Description