PythonScriptStep Třída
Vytvoří krok kanálu Azure ML, který spouští skript Pythonu.
Příklad použití PythonScriptStep najdete v poznámkovém bloku https://aka.ms/pl-get-started.
Vytvořte krok kanálu Azure ML, který spouští skript Pythonu.
- Dědičnost
-
azureml.pipeline.core._python_script_step_base._PythonScriptStepBasePythonScriptStep
Konstruktor
PythonScriptStep(script_name, name=None, arguments=None, compute_target=None, runconfig=None, runconfig_pipeline_params=None, inputs=None, outputs=None, params=None, source_directory=None, allow_reuse=True, version=None, hash_paths=None)
Parametry
Name | Description |
---|---|
script_name
Vyžadováno
|
[Povinné] Název skriptu Pythonu vzhledem k |
name
|
Název kroku. Pokud není zadán, Default value: None
|
arguments
|
Argumenty příkazového řádku pro soubor skriptu Pythonu Argumenty se předají výpočetním prostředkům prostřednictvím parametru Default value: None
|
compute_target
|
[Povinné] Cílový výpočetní objekt, který se má použít. Pokud není zadaný, použije se cíl z runconfigu. Tento parametr je možné zadat jako cílový objekt výpočetního objektu nebo jako název řetězce cílového výpočetního objektu v pracovním prostoru. Volitelně, pokud cílový výpočetní objekt není při vytváření kanálu dostupný, můžete zadat řazenou kolekci členů ("název cílového výpočetního objektu", "cílový typ výpočetního objektu"), abyste se vyhnuli načtení cílového objektu výpočetního objektu (typ AmlCompute je AmlCompute a typ RemoteCompute je VirtualMachine). Default value: None
|
runconfig
|
Volitelná konfigurace RunConfiguration, která se má použít. RunConfiguration se dá použít k určení dalších požadavků pro spuštění, jako jsou závislosti Conda a image Dockeru. Pokud není zadáno, vytvoří se výchozí runconfig. Default value: None
|
runconfig_pipeline_params
|
Přepisuje vlastnosti runconfig za běhu pomocí párů klíč-hodnota s názvem vlastnosti runconfig a PipelineParameter pro danou vlastnost. Podporované hodnoty: NodeCount, MpiProcessCountPerNode, TensorflowWorkerCount, TensorflowParameterServerCount Default value: None
|
inputs
|
list[Union[InputPortBinding, DataReference, PortDataReference, PipelineData, PipelineOutputFileDataset, PipelineOutputTabularDataset, DatasetConsumptionConfig]]
Seznam vazeb vstupních portů Default value: None
|
outputs
|
list[Union[PipelineData, OutputDatasetConfig, PipelineOutputFileDataset, PipelineOutputTabularDataset, OutputPortBinding]]
Seznam výstupních vazeb portů. Default value: None
|
params
|
Slovník párů název-hodnota zaregistrovaných jako proměnné prostředí s "AML_PARAMETER_". Default value: None
|
source_directory
|
Složka, která obsahuje skript Pythonu, env conda a další prostředky použité v kroku. Default value: None
|
allow_reuse
|
Určuje, jestli má krok znovu použít předchozí výsledky při opětovném spuštění se stejným nastavením. Opakované použití je ve výchozím nastavení povolené. Pokud obsah kroku (skripty/závislosti) i vstupy a parametry zůstanou beze změny, výstup z předchozího spuštění tohoto kroku se znovu použije. Při opakovaném použití kroku se místo odeslání úlohy k výpočtu okamžitě zpřístupní výsledky z předchozího spuštění všem dalším krokům. Pokud jako vstupy použijete datové sady Azure Machine Learning, opakované použití závisí na tom, jestli se změnila definice datové sady, a ne na tom, jestli se změnila podkladová data. Default value: True
|
version
|
Volitelná značka verze, která označuje změnu funkčnosti kroku. Default value: None
|
hash_paths
|
ZASTARALÉ: už není potřeba. Seznam cest k hodnotě hash při kontrole změn obsahu kroku Pokud se nezjistí žádné změny, kanál znovu použije obsah kroku z předchozího spuštění. Ve výchozím nastavení je obsah Default value: None
|
script_name
Vyžadováno
|
[Povinné] Název skriptu Pythonu vzhledem k |
name
Vyžadováno
|
Název kroku. Pokud není zadán, |
arguments
Vyžadováno
|
[str]
Argumenty příkazového řádku pro soubor skriptu Pythonu Argumenty se předají výpočetním prostředkům prostřednictvím parametru |
compute_target
Vyžadováno
|
[Povinné] Cílový výpočetní objekt, který se má použít. Pokud není zadaný, použije se cíl z runconfigu. Tento parametr je možné zadat jako cílový objekt výpočetního objektu nebo jako název řetězce cílového výpočetního objektu v pracovním prostoru. Volitelně, pokud cílový výpočetní objekt není při vytváření kanálu dostupný, můžete zadat řazenou kolekci členů ("název cílového výpočetního objektu", "cílový typ výpočetního objektu"), abyste se vyhnuli načtení cílového objektu výpočetního objektu (typ AmlCompute je AmlCompute a typ RemoteCompute je VirtualMachine). |
runconfig
Vyžadováno
|
Volitelná konfigurace RunConfiguration, která se má použít. RunConfiguration se dá použít k určení dalších požadavků pro spuštění, jako jsou závislosti Conda a image Dockeru. Pokud není zadáno, vytvoří se výchozí runconfig. |
runconfig_pipeline_params
Vyžadováno
|
Přepisuje vlastnosti runconfig za běhu pomocí párů klíč-hodnota s názvem vlastnosti runconfig a PipelineParameter pro danou vlastnost. Podporované hodnoty: NodeCount, MpiProcessCountPerNode, TensorflowWorkerCount, TensorflowParameterServerCount |
inputs
Vyžadováno
|
list[Union[InputPortBinding, DataReference, PortDataReference, PipelineData, PipelineOutputFileDataset, PipelineOutputTabularDataset, DatasetConsumptionConfig]]
Seznam vazeb vstupních portů |
outputs
Vyžadováno
|
list[Union[PipelineData, OutputDatasetConfig, PipelineOutputFileDataset, PipelineOutputTabularDataset, OutputPortBinding]]
Seznam výstupních vazeb portů. |
params
Vyžadováno
|
<xref:<xref:{str: str}>>
Slovník dvojic název-hodnota. Registrováno jako proměnné prostředí s ">>AML_PARAMETER_<<". |
source_directory
Vyžadováno
|
Složka, která obsahuje skript Pythonu, env conda a další prostředky použité v kroku. |
allow_reuse
Vyžadováno
|
Určuje, jestli má krok znovu použít předchozí výsledky při opětovném spuštění se stejným nastavením. Opakované použití je ve výchozím nastavení povolené. Pokud obsah kroku (skripty/závislosti) i vstupy a parametry zůstanou beze změny, výstup z předchozího spuštění tohoto kroku se znovu použije. Při opakovaném použití kroku se místo odeslání úlohy k výpočtu okamžitě zpřístupní výsledky z předchozího spuštění všem dalším krokům. Pokud jako vstupy použijete datové sady Azure Machine Learning, opakované použití závisí na tom, jestli se změnila definice datové sady, a ne na tom, jestli se změnila podkladová data. |
version
Vyžadováno
|
Volitelná značka verze, která označuje změnu funkčnosti kroku. |
hash_paths
Vyžadováno
|
ZASTARALÉ: už není potřeba. Seznam cest k hodnotě hash při kontrole změn obsahu kroku Pokud se nezjistí žádné změny, kanál znovu použije obsah kroku z předchozího spuštění. Ve výchozím nastavení je obsah |
Poznámky
PythonScriptStep je základní integrovaný krok pro spuštění skriptu Pythonu na výpočetním cíli. Přebírá název skriptu a další volitelné parametry, jako jsou argumenty pro skript, cílový výpočetní objekt, vstupy a výstupy. Pokud není zadaný žádný cíl výpočetních prostředků, použije se výchozí cílový výpočetní prostor. Můžete také použít RunConfiguration k určení požadavků pro PythonScriptStep, jako jsou závislosti conda a image Dockeru.
Osvědčeným postupem pro práci s PythonScriptStepem je použít samostatnou složku pro skripty a všechny závislé soubory přidružené ke kroku a zadat tuto složku s parametrem source_directory
.
Dodržování tohoto osvědčeného postupu má dvě výhody. Za prvé to pomůže zmenšit velikost snímku vytvořeného pro krok, protože snímek se vytvoří jenom to, co je pro krok potřeba. Za druhé je možné znovu použít výstup kroku z předchozího spuštění, pokud nedojde k source_directory
žádným změnám, které by aktivovaly opětovné nahrání snímku.
Následující příklad kódu ukazuje použití PythonScriptStep ve scénáři trénování strojového učení. Další podrobnosti o tomto příkladu najdete v tématu https://aka.ms/pl-first-pipeline.
from azureml.pipeline.steps import PythonScriptStep
trainStep = PythonScriptStep(
script_name="train.py",
arguments=["--input", blob_input_data, "--output", output_data1],
inputs=[blob_input_data],
outputs=[output_data1],
compute_target=compute_target,
source_directory=project_folder
)
PythonScriptSteps podporují řadu vstupních a výstupních typů. Patří mezi ně DatasetConsumptionConfig vstupy a OutputDatasetConfig, PipelineOutputAbstractDataseta PipelineData pro vstupy a výstupy.
Níže je příklad použití Dataset jako vstupu a výstupu kroku:
from azureml.core import Dataset
from azureml.pipeline.steps import PythonScriptStep
from azureml.pipeline.core import Pipeline, PipelineData
# get input dataset
input_ds = Dataset.get_by_name(workspace, 'weather_ds')
# register pipeline output as dataset
output_ds = PipelineData('prepared_weather_ds', datastore=datastore).as_dataset()
output_ds = output_ds.register(name='prepared_weather_ds', create_new_version=True)
# configure pipeline step to use dataset as the input and output
prep_step = PythonScriptStep(script_name="prepare.py",
inputs=[input_ds.as_named_input('weather_ds')],
outputs=[output_ds],
compute_target=compute_target,
source_directory=project_folder)
Příklady použití jiných vstupních a výstupních typů najdete na odpovídajících stránkách dokumentace.
Metody
create_node |
Vytvořte uzel pro PythonScriptStep a přidejte ho do zadaného grafu. Tato metoda není určena k přímému použití. Když se vytvoří instance kanálu pomocí tohoto kroku, Azure ML automaticky předává požadované parametry prostřednictvím této metody, aby se tento krok mohl přidat do grafu kanálu, který představuje pracovní postup. |
create_node
Vytvořte uzel pro PythonScriptStep a přidejte ho do zadaného grafu.
Tato metoda není určena k přímému použití. Když se vytvoří instance kanálu pomocí tohoto kroku, Azure ML automaticky předává požadované parametry prostřednictvím této metody, aby se tento krok mohl přidat do grafu kanálu, který představuje pracovní postup.
create_node(graph, default_datastore, context)
Parametry
Name | Description |
---|---|
graph
Vyžadováno
|
Objekt grafu, do který se má uzel přidat. |
default_datastore
Vyžadováno
|
Výchozí úložiště dat. |
context
Vyžadováno
|
<xref:azureml.pipeline.core._GraphContext>
Kontext grafu. |
Návraty
Typ | Description |
---|---|
Vytvořený uzel. |