How to properly use Azure Machine Learning environments when I have to use a curated environment based on a custom image?

Balla Péter 5 Reputation points
Oct 11, 2024, 7:47 AM

I am building and a docker image in an Azure Devops pipeline which is based on the mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04 base image recommended by Azure ML. I push the docker image to Azure ML ACR, and try to access it from there during environment setup.

I use the following environment description file:

$schema: https://azuremlschemas.azureedge.net/latest/environment.schema.json
name: name-of-environment
image: nameofmyacr.azurecr.io/my_repo/my-image:my_tag
os_type: linux

And initiate the environment creation with this az cli command:

az ml environment create \
--resource-group rg_name \
--workspace-name ws_name \
--version env_version \
--file /path/to/file/environment.yaml

During the source image build, I install a bunch of required python packages with pip (without conda), including this one:

azureml-inference-server-http

The environment setup itself succeeds, yet when I try to use it during a deployment creation, I get the following error:

Instance status:
SystemSetup: Succeeded
UserContainerImagePull: Succeeded
ModelDownload: Succeeded
UserContainerStart: InProgress

Container events:
Kind: Pod, Name: Downloading, Type: Normal, Time: 2024-10-10T16:10:40.285553Z, Message: Start downloading models
Kind: Pod, Name: Pulling, Type: Normal, Time: 2024-10-10T16:10:40.67945Z, Message: Start pulling container image
Kind: Pod, Name: Pulled, Type: Normal, Time: 2024-10-10T16:11:23.453312Z, Message: Container image is pulled successfully
Kind: Pod, Name: Downloaded, Type: Normal, Time: 2024-10-10T16:11:23.453312Z, Message: Models are downloaded successfully
Kind: Pod, Name: Created, Type: Normal, Time: 2024-10-10T16:11:23.67159Z, Message: Created container inference-server
Kind: Pod, Name: Started, Type: Normal, Time: 2024-10-10T16:11:23.74798Z, Message: Started container inference-server

Container logs:
2024-10-10T16:11:23,726359085+00:00 - rsyslog/run 
2024-10-10T16:11:23,727408496+00:00 - nginx/run 
2024-10-10T16:11:23,731947543+00:00 - gunicorn/run 
2024-10-10T16:11:23,734036564+00:00 | gunicorn/run | 
2024-10-10T16:11:23,736560690+00:00 | gunicorn/run | ###############################################
2024-10-10T16:11:23,738069606+00:00 | gunicorn/run | AzureML Container Runtime Information
2024-10-10T16:11:23,739378719+00:00 | gunicorn/run | ###############################################
2024-10-10T16:11:23,740919835+00:00 | gunicorn/run | 
2024-10-10T16:11:24,903816414+00:00 | gunicorn/run | 
2024-10-10T16:11:24,907330750+00:00 | gunicorn/run | AzureML image information: openmpi4.1.0-ubuntu20.04, Materializaton Build:20240918.v1
2024-10-10T16:11:24,908902567+00:00 | gunicorn/run | 
2024-10-10T16:11:24,910450682+00:00 | gunicorn/run | 
2024-10-10T16:11:24,912047799+00:00 | gunicorn/run | PATH environment variable: /opt/miniconda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
2024-10-10T16:11:24,913501114+00:00 | gunicorn/run | PYTHONPATH environment variable: 
2024-10-10T16:11:24,914855128+00:00 | gunicorn/run | 
2024-10-10T16:11:25,224749820+00:00 | gunicorn/run | CONDAPATH environment variable: /opt/miniconda

# conda environments:
#
base                     /opt/miniconda

2024-10-10T16:11:25,769083827+00:00 | gunicorn/run | 
2024-10-10T16:11:25,770500142+00:00 | gunicorn/run | Pip Dependencies (before dynamic installation)

archspec @ file:///home/conda/feedstock_root/build_artifacts/archspec_1708969572489/work
boltons @ file:///home/conda/feedstock_root/build_artifacts/boltons_1711936407380/work
Brotli @ file:///home/conda/feedstock_root/build_artifacts/brotli-split_1725267488082/work
certifi @ file:///home/conda/feedstock_root/build_artifacts/certifi_1725278078093/work/certifi
cffi @ file:///home/conda/feedstock_root/build_artifacts/cffi_1725560520483/work
charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1698833585322/work
colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1666700638685/work
conda @ file:///home/conda/feedstock_root/build_artifacts/conda_1722273159603/work
conda-content-trust @ file:///home/conda/feedstock_root/build_artifacts/conda-content-trust_1693490762241/work
conda-libmamba-solver @ file:///home/conda/feedstock_root/build_artifacts/conda-libmamba-solver_1721292473987/work/src
conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1717678605937/work
conda_package_streaming @ file:///home/conda/feedstock_root/build_artifacts/conda-package-streaming_1717678526951/work
cryptography @ file:///home/conda/feedstock_root/build_artifacts/cryptography-split_1725443066932/work
distro @ file:///home/conda/feedstock_root/build_artifacts/distro_1704321475663/work
frozendict @ file:///home/conda/feedstock_root/build_artifacts/frozendict_1715092766944/work
h2 @ file:///home/conda/feedstock_root/build_artifacts/h2_1634280454336/work
hpack==4.0.0
hyperframe @ file:///home/conda/feedstock_root/build_artifacts/hyperframe_1619110129307/work
idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1726459485162/work
jsonpatch @ file:///home/conda/feedstock_root/build_artifacts/jsonpatch_1695536281965/work
jsonpointer @ file:///home/conda/feedstock_root/build_artifacts/jsonpointer_1725302897999/work
libmambapy @ file:///home/conda/feedstock_root/build_artifacts/mamba-split_1725066159413/work/libmambapy
menuinst @ file:///home/conda/feedstock_root/build_artifacts/menuinst_1725358985579/work
packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1718189413536/work
platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1726613481435/work
pluggy @ file:///home/conda/feedstock_root/build_artifacts/pluggy_1713667077545/work
pycosat @ file:///home/conda/feedstock_root/build_artifacts/pycosat_1696355758174/work
pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1711811537435/work
pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1722587090966/work
PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1661604839144/work
requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1717057054362/work
ruamel.yaml @ file:///home/conda/feedstock_root/build_artifacts/ruamel.yaml_1707298115475/work
ruamel.yaml.clib @ file:///home/conda/feedstock_root/build_artifacts/ruamel.yaml.clib_1707314473442/work
tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1722737464726/work
truststore @ file:///home/conda/feedstock_root/build_artifacts/truststore_1724770958874/work
urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1726496430923/work
zstandard==0.23.0

2024-10-10T16:11:26,356251874+00:00 | gunicorn/run | 
2024-10-10T16:11:26,357903002+00:00 | gunicorn/run | Entry script directory: /var/azureml-app/scoring_scripts/.
2024-10-10T16:11:26,359612537+00:00 | gunicorn/run | 
2024-10-10T16:11:26,361258564+00:00 | gunicorn/run | ###############################################
2024-10-10T16:11:26,362837681+00:00 | gunicorn/run | Dynamic Python Package Installation
2024-10-10T16:11:26,364359391+00:00 | gunicorn/run | ###############################################
2024-10-10T16:11:26,365602962+00:00 | gunicorn/run | 
2024-10-10T16:11:26,367314098+00:00 | gunicorn/run | Dynamic Python package installation is disabled.
2024-10-10T16:11:26,368563070+00:00 | gunicorn/run | 
2024-10-10T16:11:26,369805241+00:00 | gunicorn/run | ###############################################
2024-10-10T16:11:26,371040712+00:00 | gunicorn/run | Checking if the Python package azureml-inference-server-http is installed
2024-10-10T16:11:26,372294484+00:00 | gunicorn/run | ###############################################
2024-10-10T16:11:26,373504951+00:00 | gunicorn/run | 
2024-10-10T16:11:26,580418857+00:00 | gunicorn/run | A required package azureml-inference-server-http is missing. Please install azureml-inference-server-http before trying again
2024-10-10T16:11:26,583849629+00:00 - gunicorn/finish 100 0
2024-10-10T16:11:26,585388641+00:00 - Exit code 100 is not normal. Killing image.

The problem being: A required package azureml-inference-server-http is missing. Please install azureml-inference-server-http before trying again

What am I doing wrong? What is the correct way to create and use environments, if I must build the image outside of Azure ML, and also must install the pip dependencies outside of Azure ML due to company restrictions? What are the alternatives?

Deployment description file:

$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json
model: azureml:model_name:model_version
code_configuration:
  code: scoring_scripts
  scoring_script: scorer.py
environment: azureml:env_name:env_version
endpoint_name: endpoint_name
instance_type: instance_type
instance_count: 1

Command:

az ml online-deployment create \
--name deployment_name \
--resource-group rg_name \
--workspace-name ws_name \
-f /path/top/file/online-deployment.yaml
Azure Machine Learning
Azure Machine Learning
An Azure machine learning service for building and deploying models.
3,060 questions
{count} votes

1 answer

Sort by: Most helpful
  1. Balla Péter 5 Reputation points
    Oct 11, 2024, 12:46 PM

    The problem was with the image build process, the dependencies weren't installed properly.

    1 person found this answer helpful.

Your answer

Answers can be marked as Accepted Answers by the question author, which helps users to know the answer solved the author's problem.