ImageEstimatorsCatalog.ResizeImages Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Create a ImageResizingEstimator, which resize the image from the column specified in inputColumnName
to a new column: outputColumnName
.
public static Microsoft.ML.Transforms.Image.ImageResizingEstimator ResizeImages (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, int imageWidth, int imageHeight, string inputColumnName = default, Microsoft.ML.Transforms.Image.ImageResizingEstimator.ResizingKind resizing = Microsoft.ML.Transforms.Image.ImageResizingEstimator+ResizingKind.IsoCrop, Microsoft.ML.Transforms.Image.ImageResizingEstimator.Anchor cropAnchor = Microsoft.ML.Transforms.Image.ImageResizingEstimator+Anchor.Center);
static member ResizeImages : Microsoft.ML.TransformsCatalog * string * int * int * string * Microsoft.ML.Transforms.Image.ImageResizingEstimator.ResizingKind * Microsoft.ML.Transforms.Image.ImageResizingEstimator.Anchor -> Microsoft.ML.Transforms.Image.ImageResizingEstimator
<Extension()>
Public Function ResizeImages (catalog As TransformsCatalog, outputColumnName As String, imageWidth As Integer, imageHeight As Integer, Optional inputColumnName As String = Nothing, Optional resizing As ImageResizingEstimator.ResizingKind = Microsoft.ML.Transforms.Image.ImageResizingEstimator+ResizingKind.IsoCrop, Optional cropAnchor As ImageResizingEstimator.Anchor = Microsoft.ML.Transforms.Image.ImageResizingEstimator+Anchor.Center) As ImageResizingEstimator
Parameters
- catalog
- TransformsCatalog
The transform's catalog.
- outputColumnName
- String
Name of the column resulting from the transformation of inputColumnName
.
This column's data type will be the same as that of the input column.
- imageWidth
- Int32
The transformed image width.
- imageHeight
- Int32
The transformed image height.
- resizing
- ImageResizingEstimator.ResizingKind
The type of image resizing as specified in ImageResizingEstimator.ResizingKind.
- cropAnchor
- ImageResizingEstimator.Anchor
Where to place the anchor, to start cropping. Options defined in ImageResizingEstimator.Anchor
Returns
Examples
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class ResizeImages
{
// Example on how to load the images from the file system, and resize them.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Downloading a few images, and an images.tsv file, which contains a
// list of the files from the dotnet/machinelearning/test/data/images/.
// If you inspect the fileSystem, after running this line, an "images"
// folder will be created, containing 4 images, and a .tsv file
// enumerating the images.
var imagesDataFile = Microsoft.ML.SamplesUtils.DatasetUtils
.GetSampleImages();
// Preview of the content of the images.tsv file
//
// imagePath imageType
// tomato.bmp tomato
// banana.jpg banana
// hotdog.jpg hotdog
// tomato.jpg tomato
var data = mlContext.Data.CreateTextLoader(new TextLoader.Options()
{
Columns = new[]
{
new TextLoader.Column("ImagePath", DataKind.String, 0),
new TextLoader.Column("Name", DataKind.String, 1),
}
}).Load(imagesDataFile);
var imagesFolder = Path.GetDirectoryName(imagesDataFile);
// Image loading pipeline.
var pipeline = mlContext.Transforms.LoadImages("ImageObject",
imagesFolder, "ImagePath")
.Append(mlContext.Transforms.ResizeImages("ImageObjectResized",
inputColumnName: "ImageObject", imageWidth: 100, imageHeight: 100));
var transformedData = pipeline.Fit(data).Transform(data);
// The transformedData IDataView contains the resized images now.
// Preview the transformedData.
PrintColumns(transformedData);
// ImagePath Name ImageObject ImageObjectResized
// tomato.bmp tomato {Width=800, Height=534} {Width=100, Height=100}
// banana.jpg banana {Width=800, Height=288} {Width=100, Height=100}
// hotdog.jpg hotdog {Width=800, Height=391} {Width=100, Height=100}
// tomato.jpg tomato {Width=800, Height=534} {Width=100, Height=100}
}
private static void PrintColumns(IDataView transformedData)
{
Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25}", "ImagePath",
"Name", "ImageObject", "ImageObjectResized");
using (var cursor = transformedData.GetRowCursor(transformedData
.Schema))
{
// Note that it is best to get the getters and values *before*
// iteration, so as to facilitate buffer sharing (if applicable), and
// column -type validation once, rather than many times.
ReadOnlyMemory<char> imagePath = default;
ReadOnlyMemory<char> name = default;
MLImage imageObject = null;
MLImage resizedImageObject = null;
var imagePathGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["ImagePath"]);
var nameGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["Name"]);
var imageObjectGetter = cursor.GetGetter<MLImage>(cursor.Schema[
"ImageObject"]);
var resizedImageGetter = cursor.GetGetter<MLImage>(cursor.Schema[
"ImageObjectResized"]);
while (cursor.MoveNext())
{
imagePathGetter(ref imagePath);
nameGetter(ref name);
imageObjectGetter(ref imageObject);
resizedImageGetter(ref resizedImageObject);
Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25}",
imagePath, name,
$"Width={imageObject.Width}, Height={imageObject.Height}",
$"Width={resizedImageObject.Width}, Height={resizedImageObject.Height}");
}
// Dispose the image.
imageObject.Dispose();
resizedImageObject.Dispose();
}
}
}
}