TweedieLoss Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Tweedie loss, based on the log-likelihood of the Tweedie distribution. This loss function is used in Tweedie regression.
public sealed class TweedieLoss : Microsoft.ML.Trainers.ILossFunction<float,float>, Microsoft.ML.Trainers.IRegressionLoss
type TweedieLoss = class
interface IRegressionLoss
interface IScalarLoss
interface ILossFunction<single, single>
Public NotInheritable Class TweedieLoss
Implements ILossFunction(Of Single, Single), IRegressionLoss
- Inheritance
-
TweedieLoss
- Implements
Remarks
The Tweedie Loss function is defined as:
$ L(\hat{y}, y, i) = \begin{cases} \hat{y} - y ln(\hat{y}) + ln(\Gamma(y)) & \text{if } i = 1 \\\\ \hat{y} + \frac{y}{\hat{y}} - \sqrt{y} & \text{if } i = 2 \\\\ \frac{(\hat{y})^{2 - i}}{2 - i} - y \frac{(\hat{y})^{1 - i}}{1 - i} - (\frac{y^{2 - i}}{2 - i} - y\frac{y^{1 - i}}{1 - i}) & \text{otherwise} \end{cases} $
where $\hat{y}$ is the predicted value, $y$ is the true label, $\Gamma$ is the Gamma function, and $i$ is the index parameter for the Tweedie distribution, in the range [1, 2]. $i$ is set to 1.5 by default. $i = 1$ is Poisson loss, $i = 2$ is gamma loss, and intermediate values are compound Poisson-Gamma loss.
Constructors
TweedieLoss(Double) |
Constructor for Tweedie loss. |
Methods
Derivative(Single, Single) | |
Loss(Single, Single) |