Math.Pow Method
Microsoft Silverlight will reach end of support after October 2021. Learn more.
Returns a specified number raised to the specified power.
Namespace: System
Assembly: mscorlib (in mscorlib.dll)
Syntax
'Declaration
<SecuritySafeCriticalAttribute> _
Public Shared Function Pow ( _
x As Double, _
y As Double _
) As Double
[SecuritySafeCriticalAttribute]
public static double Pow(
double x,
double y
)
Parameters
- x
Type: System.Double
A double-precision floating-point number to be raised to a power.
- y
Type: System.Double
A double-precision floating-point number that specifies a power.
Return Value
Type: System.Double
The number x raised to the power y.
Remarks
The following table indicates the return value when various values or ranges of values are specified for the x and y parameters. For more information, see Double.PositiveInfinity, Double.NegativeInfinity, and Double.NaN.
Parameters |
Return Value |
---|---|
x or y = NaN |
NaN |
x = Any value except NaN; y = 0 |
1 |
x = NegativeInfinity; y < 0 |
0 |
x = NegativeInfinity; y is a positive odd integer |
NegativeInfinity |
x = NegativeInfinity; y is positive but not an odd integer |
PositiveInfinity |
x < 0 but not NegativeInfinity; y is not an integer, NegativeInfinity, or PositiveInfinity |
NaN |
x = -1; y = NegativeInfinity or PositiveInfinity |
NaN |
-1 < x < 1; y = NegativeInfinity |
PositiveInfinity |
-1 < x < 1; y = PositiveInfinity |
0 |
x < -1 or x > 1; y = NegativeInfinity |
0 |
x < -1 or x > 1; y = PositiveInfinity |
PositiveInfinity |
x = 0; y < 0 |
PositiveInfinity |
x = 0; y > 0 |
0 |
x = 1; y is any value except NaN |
1 |
x = PositiveInfinity; y < 0 |
0 |
x = PositiveInfinity; y > 0 |
PositiveInfinity |
Examples
The following example uses the Pow method to calculate the value that results from raising 2 to a power ranging from 0 to 32.
Public Module Example
Public Sub Demo(ByVal outputBlock As System.Windows.Controls.TextBlock)
Dim value As Integer = 2
For power As Integer = 0 To 32
outputBlock.Text += String.Format("{0}^{1} = {2:N0} (0x{2:X})", _
value, power, CLng(Math.Pow(value, power))) + vbCrLf
Next
End Sub
End Module
' The example displays the following output:
' 2^0 = 1 (0x1)
' 2^1 = 2 (0x2)
' 2^2 = 4 (0x4)
' 2^3 = 8 (0x8)
' 2^4 = 16 (0x10)
' 2^5 = 32 (0x20)
' 2^6 = 64 (0x40)
' 2^7 = 128 (0x80)
' 2^8 = 256 (0x100)
' 2^9 = 512 (0x200)
' 2^10 = 1,024 (0x400)
' 2^11 = 2,048 (0x800)
' 2^12 = 4,096 (0x1000)
' 2^13 = 8,192 (0x2000)
' 2^14 = 16,384 (0x4000)
' 2^15 = 32,768 (0x8000)
' 2^16 = 65,536 (0x10000)
' 2^17 = 131,072 (0x20000)
' 2^18 = 262,144 (0x40000)
' 2^19 = 524,288 (0x80000)
' 2^20 = 1,048,576 (0x100000)
' 2^21 = 2,097,152 (0x200000)
' 2^22 = 4,194,304 (0x400000)
' 2^23 = 8,388,608 (0x800000)
' 2^24 = 16,777,216 (0x1000000)
' 2^25 = 33,554,432 (0x2000000)
' 2^26 = 67,108,864 (0x4000000)
' 2^27 = 134,217,728 (0x8000000)
' 2^28 = 268,435,456 (0x10000000)
' 2^29 = 536,870,912 (0x20000000)
' 2^30 = 1,073,741,824 (0x40000000)
' 2^31 = 2,147,483,648 (0x80000000)
' 2^32 = 4,294,967,296 (0x100000000)
using System;
public class Example
{
public static void Demo(System.Windows.Controls.TextBlock outputBlock)
{
int value = 2;
for (int power = 0; power <= 32; power++)
outputBlock.Text += String.Format("{0}^{1} = {2:N0} (0x{2:X})",
value, power, (long)Math.Pow(value, power)) + "\n";
}
}
// The example displays the following output:
// 2^0 = 1 (0x1)
// 2^1 = 2 (0x2)
// 2^2 = 4 (0x4)
// 2^3 = 8 (0x8)
// 2^4 = 16 (0x10)
// 2^5 = 32 (0x20)
// 2^6 = 64 (0x40)
// 2^7 = 128 (0x80)
// 2^8 = 256 (0x100)
// 2^9 = 512 (0x200)
// 2^10 = 1,024 (0x400)
// 2^11 = 2,048 (0x800)
// 2^12 = 4,096 (0x1000)
// 2^13 = 8,192 (0x2000)
// 2^14 = 16,384 (0x4000)
// 2^15 = 32,768 (0x8000)
// 2^16 = 65,536 (0x10000)
// 2^17 = 131,072 (0x20000)
// 2^18 = 262,144 (0x40000)
// 2^19 = 524,288 (0x80000)
// 2^20 = 1,048,576 (0x100000)
// 2^21 = 2,097,152 (0x200000)
// 2^22 = 4,194,304 (0x400000)
// 2^23 = 8,388,608 (0x800000)
// 2^24 = 16,777,216 (0x1000000)
// 2^25 = 33,554,432 (0x2000000)
// 2^26 = 67,108,864 (0x4000000)
// 2^27 = 134,217,728 (0x8000000)
// 2^28 = 268,435,456 (0x10000000)
// 2^29 = 536,870,912 (0x20000000)
// 2^30 = 1,073,741,824 (0x40000000)
// 2^31 = 2,147,483,648 (0x80000000)
// 2^32 = 4,294,967,296 (0x100000000)
Version Information
Silverlight
Supported in: 5, 4, 3
Silverlight for Windows Phone
Supported in: Windows Phone OS 7.1, Windows Phone OS 7.0
XNA Framework
Supported in: Xbox 360, Windows Phone OS 7.0
Platforms
For a list of the operating systems and browsers that are supported by Silverlight, see Supported Operating Systems and Browsers.