CLR User-Defined Aggregate - Invoking Functions
Applies to: SQL Server
In Transact-SQL SELECT statements, you can invoke common language runtime (CLR) user-defined aggregates, subject to all the rules that apply to system aggregate functions.
The following additional rules apply:
The current user must have EXECUTE permission on the user-defined aggregate.
User-defined aggregates must be invoked using a two-part name in the form of schema_name.udagg_name.
The argument type of the user-defined aggregate must match or be implicitly convertible to the input_type of the aggregate, as defined in the CREATE AGGREGATE statement.
The return type of the user-defined aggregate must match the return_type in the CREATE AGGREGATE statement.
Example 1
The following is an example of a user-defined aggregate function that concatenates a set of string values taken from a column in a table:
[C#]
using System;
using System.Data;
using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;
using System.IO;
using System.Text;
[Serializable]
[SqlUserDefinedAggregate(
Format.UserDefined, //use clr serialization to serialize the intermediate result
IsInvariantToNulls = true, //optimizer property
IsInvariantToDuplicates = false, //optimizer property
IsInvariantToOrder = false, //optimizer property
MaxByteSize = 8000) //maximum size in bytes of persisted value
]
public class Concatenate : IBinarySerialize
{
/// <summary>
/// The variable that holds the intermediate result of the concatenation
/// </summary>
public StringBuilder intermediateResult;
/// <summary>
/// Initialize the internal data structures
/// </summary>
public void Init()
{
this.intermediateResult = new StringBuilder();
}
/// <summary>
/// Accumulate the next value, not if the value is null
/// </summary>
/// <param name="value"></param>
public void Accumulate(SqlString value)
{
if (value.IsNull)
{
return;
}
this.intermediateResult.Append(value.Value).Append(',');
}
/// <summary>
/// Merge the partially computed aggregate with this aggregate.
/// </summary>
/// <param name="other"></param>
public void Merge(Concatenate other)
{
this.intermediateResult.Append(other.intermediateResult);
}
/// <summary>
/// Called at the end of aggregation, to return the results of the aggregation.
/// </summary>
/// <returns></returns>
public SqlString Terminate()
{
string output = string.Empty;
//delete the trailing comma, if any
if (this.intermediateResult != null
&& this.intermediateResult.Length > 0)
{
output = this.intermediateResult.ToString(0, this.intermediateResult.Length - 1);
}
return new SqlString(output);
}
public void Read(BinaryReader r)
{
intermediateResult = new StringBuilder(r.ReadString());
}
public void Write(BinaryWriter w)
{
w.Write(this.intermediateResult.ToString());
}
}
[Visual Basic]
Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.IO
Imports System.Text
<Serializable(), SqlUserDefinedAggregate(Format.UserDefined, IsInvariantToNulls:=True, IsInvariantToDuplicates:=False, IsInvariantToOrder:=False, MaxByteSize:=8000)> _
Public Class Concatenate
Implements IBinarySerialize
''' <summary>
''' The variable that holds the intermediate result of the concatenation
''' </summary>
Public intermediateResult As StringBuilder
''' <summary>
''' Initialize the internal data structures
''' </summary>
Public Sub Init()
Me.intermediateResult = New StringBuilder()
End Sub
''' <summary>
''' Accumulate the next value, not if the value is null
''' </summary>
''' <param name="value"></param>
Public Sub Accumulate(ByVal value As SqlString)
If value.IsNull Then
Return
End If
Me.intermediateResult.Append(value.Value).Append(","c)
End Sub
''' <summary>
''' Merge the partially computed aggregate with this aggregate.
''' </summary>
''' <param name="other"></param>
Public Sub Merge(ByVal other As Concatenate)
Me.intermediateResult.Append(other.intermediateResult)
End Sub
''' <summary>
''' Called at the end of aggregation, to return the results of the aggregation.
''' </summary>
''' <returns></returns>
Public Function Terminate() As SqlString
Dim output As String = String.Empty
'delete the trailing comma, if any
If Not (Me.intermediateResult Is Nothing) AndAlso Me.intermediateResult.Length > 0 Then
output = Me.intermediateResult.ToString(0, Me.intermediateResult.Length - 1)
End If
Return New SqlString(output)
End Function
Public Sub Read(ByVal r As BinaryReader) Implements IBinarySerialize.Read
intermediateResult = New StringBuilder(r.ReadString())
End Sub
Public Sub Write(ByVal w As BinaryWriter) Implements IBinarySerialize.Write
w.Write(Me.intermediateResult.ToString())
End Sub
End Class
Once you compile the code into MyAgg.dll, you can register the aggregate in SQL Server as follows:
CREATE ASSEMBLY MyAgg FROM 'C:\MyAgg.dll';
GO
CREATE AGGREGATE MyAgg (@input nvarchar(200)) RETURNS nvarchar(max)
EXTERNAL NAME MyAgg.Concatenate;
Note
Visual C++ database objects, such as scalar-valued functions, that have been compiled with the /clr:pure compiler option are not supported for execution in SQL Server.
As with most aggregates, the bulk of the logic is in the Accumulate method. Here, the string that is passed in as a parameter to the Accumulate method is appended to the StringBuilder object that was initialized in the Init method. Assuming that this is not the first time the Accumulate method has been called, a comma is also appended to the StringBuilder prior to appending the passed-in string. At the conclusion of the computational tasks, the Terminate method is called, which returns the StringBuilder as a string.
For example, consider a table with the following schema:
CREATE TABLE BookAuthors
(
BookID int NOT NULL,
AuthorName nvarchar(200) NOT NULL
);
Then insert the following rows:
INSERT BookAuthors VALUES(1, 'Johnson'),(2, 'Taylor'),(3, 'Steven'),(2, 'Mayler'),(3, 'Roberts'),(3, 'Michaels');
The following query would then produce the following result:
SELECT BookID, dbo.MyAgg(AuthorName)
FROM BookAuthors
GROUP BY BookID;
BookID | Author Names |
---|---|
1 | Johnson |
2 | Taylor, Mayler |
3 | Roberts, Michaels, Steven |
Example 2
The following sample shows an aggregate that has two parameters on the Accumulate method.
[C#]
using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
[Serializable]
[SqlUserDefinedAggregate(
Format.Native,
IsInvariantToDuplicates = false,
IsInvariantToNulls = true,
IsInvariantToOrder = true,
IsNullIfEmpty = true,
Name = "WeightedAvg")]
public struct WeightedAvg
{
/// <summary>
/// The variable that holds the intermediate sum of all values multiplied by their weight
/// </summary>
private long sum;
/// <summary>
/// The variable that holds the intermediate sum of all weights
/// </summary>
private int count;
/// <summary>
/// Initialize the internal data structures
/// </summary>
public void Init()
{
sum = 0;
count = 0;
}
/// <summary>
/// Accumulate the next value, not if the value is null
/// </summary>
/// <param name="Value">Next value to be aggregated</param>
/// <param name="Weight">The weight of the value passed to Value parameter</param>
public void Accumulate(SqlInt32 Value, SqlInt32 Weight)
{
if (!Value.IsNull && !Weight.IsNull)
{
sum += (long)Value * (long)Weight;
count += (int)Weight;
}
}
/// <summary>
/// Merge the partially computed aggregate with this aggregate
/// </summary>
/// <param name="Group">The other partial results to be merged</param>
public void Merge(WeightedAvg Group)
{
sum += Group.sum;
count += Group.count;
}
/// <summary>
/// Called at the end of aggregation, to return the results of the aggregation.
/// </summary>
/// <returns>The weighted average of all inputed values</returns>
public SqlInt32 Terminate()
{
if (count > 0)
{
int value = (int)(sum / count);
return new SqlInt32(value);
}
else
{
return SqlInt32.Null;
}
}
}
[Visual Basic]
Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Runtime.InteropServices
<StructLayout(LayoutKind.Sequential)> _
<Serializable(), SqlUserDefinedAggregate(Format.Native, _
IsInvariantToDuplicates:=False, _
IsInvariantToNulls:=True, _
IsInvariantToOrder:=True, _
IsNullIfEmpty:=True, _
Name:="WeightedAvg")> _
Public Class WeightedAvg
''' <summary>
''' The variable that holds the intermediate sum of all values multiplied by their weight
''' </summary>
Private sum As Long
''' <summary>
''' The variable that holds the intermediate sum of all weights
''' </summary>
Private count As Integer
''' <summary>
''' The variable that holds the intermediate sum of all weights
''' </summary>
Public Sub Init()
sum = 0
count = 0
End Sub
''' <summary>
''' Accumulate the next value, not if the value is null
''' </summary>
''' <param name="Value">Next value to be aggregated</param>
''' <param name="Weight">The weight of the value passed to Value parameter</param>
Public Sub Accumulate(ByVal Value As SqlInt32, ByVal Weight As SqlInt32)
If Not Value.IsNull AndAlso Not Weight.IsNull Then
sum += CType(Value, Long) * CType(Weight, Long)
count += CType(Weight, Integer)
End If
End Sub
''' <summary>
''' Merge the partially computed aggregate with this aggregate.
''' </summary>
''' <param name="Group">The other partial results to be merged</param>
Public Sub Merge(ByVal Group As WeightedAvg)
sum = Group.sum
count = Group.count
End Sub
''' <summary>
''' Called at the end of aggregation, to return the results of the aggregation.
''' </summary>
''' <returns>The weighted average of all inputed values</returns>
Public Function Terminate() As SqlInt32
If count > 0 Then
'' int value = (int)(sum / count);
'' return new SqlInt32(value);
Dim value As Integer = CType(sum / count, Integer)
Return New SqlInt32(value)
Else
Return SqlInt32.Null
End If
End Function
End Class
After you compile the C# or Visual Basic source code, run the following Transact-SQL. This script assumes that the DLL is called WghtAvg.dll and is in the root directory of your C drive. A database called test is also assumed.
use test;
go
-- sp_configure 'clr enabled', 1;
-- go
--- RECONFIGURE WITH OVERRIDE;
-- go
IF EXISTS (SELECT name FROM systypes WHERE name = 'MyTableType')
DROP TYPE MyTableType;
go
IF EXISTS (SELECT name FROM sysobjects WHERE name = 'WeightedAvg')
DROP AGGREGATE WeightedAvg;
go
IF EXISTS (SELECT name FROM sys.assemblies WHERE name = 'MyClrCode')
DROP ASSEMBLY MyClrCode;
go
CREATE ASSEMBLY MyClrCode FROM 'C:\WghtAvg.dll';
GO
CREATE AGGREGATE WeightedAvg (@value int, @weight int) RETURNS int
EXTERNAL NAME MyClrCode.WeightedAvg;
go
CREATE TYPE MyTableType AS table (ItemValue int, ItemWeight int);
go
DECLARE @myTable AS MyTableType;
INSERT INTO @myTable VALUES(1, 4), (6, 1);
SELECT dbo.WeightedAvg(ItemValue, ItemWeight) FROM @myTable;
go