Bloqueo y desbloqueo de intervalos de bytes en archivos
Aunque el sistema permite que más de una aplicación abra un archivo y escriba en él, las aplicaciones no deben escribir sobre el trabajo de los demás. Una aplicación puede evitar este problema bloqueando temporalmente un intervalo de bytes en un archivo.
Las funciones LockFile y LockFileEx bloquean un intervalo especificado de bytes en un archivo. El intervalo puede extenderse más allá del final actual del archivo. Bloquear parte de un archivo proporciona a los subprocesos de los procesos de bloqueo acceso exclusivo al intervalo de bytes especificado mediante el identificador de archivo especificado. Siempre se produce un error en los intentos de acceso a un intervalo de bytes bloqueado por otro proceso. Si el proceso de bloqueo intenta acceder a un intervalo de bytes bloqueado a través de un segundo identificador de archivo, se produce un error en el intento.
Nota
Los bloqueos de intervalo de bytes se omiten al usar archivos asignados a memoria.
La función LockFileEx permite a una aplicación especificar uno de los dos tipos de bloqueos. Un bloqueo exclusivo deniega a todos los demás procesos acceso de lectura y escritura al intervalo de bytes especificado de un archivo. Un bloqueo compartido deniega a todos los procesos acceso de escritura al intervalo de bytes especificado de un archivo, incluido el proceso que bloquea primero el intervalo de bytes. Esto se puede usar para crear un intervalo de bytes de solo lectura en un archivo.
Una aplicación desbloquea el intervalo de bytes mediante la función UnlockFile o UnlockFileEx y debe desbloquear todas las áreas bloqueadas antes de cerrar un archivo.
Para obtener un ejemplo de uso de LockFile, vea Anexar un archivo a otro archivo.
En los ejemplos siguientes se muestra cómo usar LockFileEx. El primer ejemplo es una demostración sencilla para crear un archivo, escribir algunos datos en él y, a continuación, bloquear una sección en el medio.
Nota En este ejemplo no se cambian los datos después de bloquear el archivo.
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (C) Microsoft. All rights reserved
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#define NUMWRITES 10
#define TESTSTRLEN 11
const char TestData[NUMWRITES][TESTSTRLEN] =
{
"TestData0\n",
"TestData1\n",
"TestData2\n",
"TestData3\n",
"TestData4\n",
"TestData5\n",
"TestData6\n",
"TestData7\n",
"TestData8\n",
"TestData9\n"
};
int main(int argc, char *argv[])
{
BOOL fSuccess = FALSE;
// Create the file, open for both read and write.
HANDLE hFile = CreateFile(TEXT("datafile.txt"),
GENERIC_READ | GENERIC_WRITE,
0, // open with exclusive access
NULL, // no security attributes
CREATE_NEW, // creating a new temp file
0, // not overlapped index/O
NULL);
if (hFile == INVALID_HANDLE_VALUE)
{
// Handle the error.
printf("CreateFile failed (%d)\n", GetLastError());
return (1);
}
// Write some data to the file.
DWORD dwNumBytesWritten = 0;
for (int i=0; i<NUMWRITES; i++)
{
fSuccess = WriteFile(hFile,
TestData[i],
TESTSTRLEN,
&dwNumBytesWritten,
NULL); // sync operation.
if (!fSuccess)
{
// Handle the error.
printf("WriteFile failed (%d)\n", GetLastError());
return (2);
}
}
FlushFileBuffers(hFile);
// Lock the 4th write-section.
// First, set up the Overlapped structure with the file offset
// required by LockFileEx, three lines in to the file.
OVERLAPPED sOverlapped;
sOverlapped.Offset = TESTSTRLEN * 3;
sOverlapped.OffsetHigh = 0;
// Actually lock the file. Specify exclusive access, and fail
// immediately if the lock cannot be obtained.
fSuccess = LockFileEx(hFile, // exclusive access,
LOCKFILE_EXCLUSIVE_LOCK |
LOCKFILE_FAIL_IMMEDIATELY,
0, // reserved, must be zero
TESTSTRLEN, // number of bytes to lock
0,
&sOverlapped); // contains the file offset
if (!fSuccess)
{
// Handle the error.
printf ("LockFileEx failed (%d)\n", GetLastError());
return (3);
}
else printf("LockFileEx succeeded\n");
/////////////////////////////////////////////////////////////////
// Add code that does something interesting to locked section, /
// which should be line 4 /
/////////////////////////////////////////////////////////////////
// Unlock the file.
fSuccess = UnlockFileEx(hFile,
0, // reserved, must be zero
TESTSTRLEN, // num. of bytes to unlock
0,
&sOverlapped); // contains the file offset
if (!fSuccess)
{
// Handle the error.
printf ("UnlockFileEx failed (%d)\n", GetLastError());
return (4);
}
else printf("UnlockFileEx succeeded\n");
// Clean up handles, memory, and the created file.
fSuccess = CloseHandle(hFile);
if (!fSuccess)
{
// Handle the error.
printf ("CloseHandle failed (%d)\n", GetLastError());
return (5);
}
fSuccess = DeleteFile(TEXT("datafile.txt"));
if (!fSuccess)
{
// Handle the error.
printf ("DeleteFile failed (%d)\n", GetLastError());
return (6);
}
return (0);
}
El ejemplo siguiente es una demostración avanzada del bloqueo de intervalo de bytes, mediante varios subprocesos y una base de datos simple que realiza operaciones aleatorias en un único archivo de datos. Para obtener más información, vea los comentarios de código incrustado y la sección que sigue al código de ejemplo.
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (C) Microsoft. All rights reserved
#define UNICODE
#define _CRT_RAND_S
#include <stdlib.h>
#include <windows.h>
#include <stdio.h>
#include <malloc.h>
#include <conio.h>
#include <process.h>
#include <winioctl.h>
#define RECORD_SIZE 0x300
#define NUM_RECORDS 0x1000
#define NUM_THREADS 8
#define NUM_FILEOPS 500
#define BITMAP_SIZE ((NUM_RECORDS) / 8)
#define DATA_SIZE ((RECORD_SIZE) - sizeof(RECORD_HEADER))
#define MSG_PRINTF(S,...) wprintf(L"[THREAD_ID %d] " S, \
GetCurrentThreadId(), \
__VA_ARGS__)
#if defined BRLS_DEBUG
#define DBG_PRINTF(S,...) wprintf(L"[THREAD_ID %d] " S, \
GetCurrentThreadId(), \
__VA_ARGS__)
#else
#define DBG_PRINTF(...)
#define PrintBitmap(...)
#endif
#define MASTER_RECORD_TYPE_CODE 'rtsM'
#define DATA_RECORD_TYPE_CODE 'ataD'
//
// Record type definitions.
//
typedef struct _RECORD_HEADER {
ULONG TypeCode; // Either MASTER_RECORD_TYPE_CODE or DATA_RECORD_TYPE_CODE.
ULONG SeqNumber; // Starts at 1 and is incremented every time contents are modified.
} RECORD_HEADER;
typedef struct _MASTER_RECORD {
RECORD_HEADER Header;
BYTE Bitmap[BITMAP_SIZE]; // A bitmap indicating which records are allocated.
} MASTER_RECORD;
typedef struct _DATA_RECORD {
RECORD_HEADER Header;
BYTE Data[DATA_SIZE]; // Record raw data.
} DATA_RECORD;
//
// Types of I/O for IoRecord.
//
typedef enum {
IoRead,
IoWrite,
IoLock,
IoUnlock
} IO_TYPE;
//
// Types of operations for OperateOnRecord.
//
typedef enum {
CreateRecord = 0,
DeleteRecord,
ModifyRecord,
MaxOprRecord
} OPERATION;
//
// Parameter block for I/Os passed to IoRecord.
//
typedef struct _IO_PARAM {
IO_TYPE Type;
union _IO_PARAM_PARAMS {
struct {
PVOID Data;
ULONG RecSize;
} IoInfo;
struct {
BOOL Exclusive;
} LockInfo ;
} Params;
} IO_PARAM, *PIO_PARAM;
void ErrorExitThread()
//
// This function is called immediately after an unrecoverable error is logged.
//
{
MSG_PRINTF(L"An error has been logged, calling ExitThread.\n");
ExitThread(1);
}
BOOL IoRecord(HANDLE hFile, ULONG RecNumber, PIO_PARAM pIoParam)
//
// This function performs I/O (read, write, lock or unlock) in a record, according
// to the parameters passed in the IO_PARAM block.
//
// Arguments:
// hFile - Handle to the file containing the records.
// RecNumber - Number of the record to be operated on.
// pIoParam - Pointer to IO_PARAM structure.
//
// Return value:
// TRUE if the I/O succeeded, FALSE if not.
//
{
OVERLAPPED Overlapped;
BOOL Result;
ULARGE_INTEGER RecOffset;
DWORD NumBytes;
// Initialize Overlapped.
SecureZeroMemory(&Overlapped, sizeof(OVERLAPPED));
Overlapped.hEvent = CreateEvent(NULL,
FALSE,
FALSE,
NULL);
if (NULL == Overlapped.hEvent)
{
MSG_PRINTF(L"CreateEvent for Overlapped.hEvent failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Calculate record position.
RecOffset.QuadPart = RecNumber * RECORD_SIZE;
Overlapped.Offset = RecOffset.LowPart;
Overlapped.OffsetHigh = RecOffset.HighPart;
// Issue the operation.
switch (pIoParam->Type)
{
case IoLock:
Result = LockFileEx(hFile,
pIoParam->Params.LockInfo.Exclusive ? LOCKFILE_EXCLUSIVE_LOCK : 0,
0,
RECORD_SIZE,
0,
&Overlapped);
break;
case IoUnlock:
Result = UnlockFileEx(hFile,
0,
RECORD_SIZE,
0,
&Overlapped);
break;
case IoRead:
Result = ReadFile(hFile,
pIoParam->Params.IoInfo.Data,
pIoParam->Params.IoInfo.RecSize,
NULL,
&Overlapped);
break;
case IoWrite:
Result = WriteFile(hFile,
pIoParam->Params.IoInfo.Data,
pIoParam->Params.IoInfo.RecSize,
NULL,
&Overlapped);
break;
default:
Result = FALSE;
break;
}
if (!Result)
{
if (GetLastError() == ERROR_IO_PENDING)
{
// Wait until the operation finishes.
if (GetOverlappedResult(hFile,
&Overlapped,
&NumBytes,
TRUE) == FALSE)
{
MSG_PRINTF(L"GetOverlappedResult for Overlapped.hEvent failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
Result = TRUE;
} else {
MSG_PRINTF(L"IoRecord failed with error 0x%08x. Failure passed to caller.\n",
GetLastError());
}
}
CloseHandle(Overlapped.hEvent);
return Result;
}
//
// The following functions are wrappers around IoRecord, they just set the correct
// parameters in the IO_PARAM block to correspond to the requested operation and
// pass that to IoRecord.
//
BOOL ReadRecord(HANDLE hFile, ULONG RecNumber, PVOID Record, ULONG RecSize)
{
IO_PARAM IoParam;
IoParam.Type = IoRead;
IoParam.Params.IoInfo.Data = Record;
IoParam.Params.IoInfo.RecSize = RecSize;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL WriteRecord(HANDLE hFile, ULONG RecNumber, PVOID Record, ULONG RecSize)
{
IO_PARAM IoParam;
IoParam.Type = IoWrite;
IoParam.Params.IoInfo.Data = Record;
IoParam.Params.IoInfo.RecSize = RecSize;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL LockRecord(HANDLE hFile, ULONG RecNumber, BOOL Exclusive)
{
IO_PARAM IoParam;
IoParam.Type = IoLock;
IoParam.Params.LockInfo.Exclusive = Exclusive;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL UnlockRecord(HANDLE hFile, ULONG RecNumber)
{
IO_PARAM IoParam;
IoParam.Type = IoUnlock;
return IoRecord(hFile, RecNumber, &IoParam);
}
ULONG ReserveFirstFreeRecord(BYTE* Bitmap)
//
// This function iterates through the bitmap and reserves the first free record
// it can find in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
//
// Return value:
// Either zero, if there are no free records, or the position of the record
// that was just reserved.
//
{
int i;
BYTE Bit = 1;
for (i = 0; i < NUM_RECORDS; i++)
{
if (Bitmap[i / 8] & Bit)
{
Bit <<= 1;
if (Bit == 0) { Bit = 1; }
} else {
Bitmap[i / 8] |= Bit;
return i;
}
}
return 0;
}
BOOL TestBit(BYTE* Bitmap, ULONG Bit)
//
// This function tests if a given bit is set in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
// Bit - Position of the bit in the bitmap.
//
// Return value:
// TRUE if the bit is set, FALSE otherwise.
//
{
ULONG Byte = Bit / 8;
Bit = Bit % 8;
return (BOOL)(Bitmap[Byte] & (1 << Bit));
}
void ClearBit(BYTE* Bitmap, ULONG Bit)
//
// This function clears a given bit in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
// Bit - Position of the bit in the bitmap.
//
{
ULONG Byte = Bit / 8;
Bit = Bit % 8;
Bitmap[Byte] &= ~(1 << Bit);
}
#ifdef BRLS_DEBUG
void PrintBitmap(BYTE* Bitmap)
//
// This function prints the whole bitmap, for debugging purposes.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
//
{
int i;
for (i = 0; i < BITMAP_SIZE; i++)
{
wprintf(L"%1x", Bitmap[i]);
}
wprintf(L"\n");
}
#endif
void InitRecord(RECORD_HEADER* Record, BOOL Master, ULONG SeqNumber)
//
// This function initializes a in-memory record structure with the correct
// type code and sequence number. In case of the Master Record, the bitmap
// is initialized too.
//
// Arguments:
// Record - Pointer to the record structure.
// Master - TRUE if this is a Master Record, FALSE otherwise.
// SeqNumber - Initial sequence number.
//
{
ULONG RecSize = Master ? sizeof(MASTER_RECORD) : sizeof(DATA_RECORD);
ULONG TypeCode = Master ? MASTER_RECORD_TYPE_CODE : DATA_RECORD_TYPE_CODE;
SecureZeroMemory(Record, RecSize);
Record->TypeCode = TypeCode;
Record->SeqNumber = Master ? 0 : SeqNumber;
if (Master)
{
((MASTER_RECORD*)Record)->Bitmap[0] = 1;
}
}
DATA_RECORD* PrepareRecord(ULONG SeqNumber)
//
// This function allocates a new in-memory record structure and initializes it
// as a brand new data record.
//
// Arguments:
// SeqNumber - Sequence number with which to initialize the record.
//
// Return value:
// Pointer to the record structure.
//
{
DATA_RECORD* Record = NULL;
Record = (DATA_RECORD*) malloc(sizeof(DATA_RECORD));
if (Record == NULL)
{
MSG_PRINTF(L"Critical error: malloc for CreateRecord failed.\n");
ErrorExitThread();
}
InitRecord((RECORD_HEADER*)Record, FALSE, SeqNumber);
return Record;
}
void WriteData(DATA_RECORD* Record)
//
// This function fills a in-memory data record structure with random data.
// Errors do not interrupt execution.
//
// Arguments:
// Record - Pointer to the record structure.
//
{
PUINT iData;
int i;
errno_t err;
iData = (PUINT)Record->Data;
for (i = 0; i < DATA_SIZE; i += sizeof(ULONG), iData++)
{
err = rand_s(iData);
if (err != 0)
{
MSG_PRINTF(L"rand_s for WriteData failed with error 0x%08x, continuing execution.\n",
err);
}
}
}
BOOL OperateOnRecord(HANDLE hFile, PULONG RecNumber, OPERATION Operation)
//
// This function executes a high-level operation in a record (create, modify or delete).
//
// Arguments:
// hFile - Handle to the file containing the record to be operated on.
// RecNumber - Pointer to a ULONG that either will receive the number of the
// record created by this operation or just contains the number
// of the record that will be modified or deleted.
// Operation - Operation to be performed (CreateRecord, ModifyRecord or
// DeleteRecord).
//
// Return value:
// TRUE if the operation succeeded, FALSE otherwise.
//
{
BOOL Result;
BOOL Exists;
BOOL ExclusiveLock;
MASTER_RECORD MasterRecord;
DATA_RECORD* Record;
// Fail operations on Master Record.
if ((Operation != CreateRecord) && (*RecNumber == 0))
{
MSG_PRINTF(L"Cannot operate on Master Record.\n");
return FALSE;
}
// Lock Master Record. If we're just modifying a record, we can get a
// shared lock.
ExclusiveLock = (Operation != ModifyRecord);
Result = LockRecord(hFile, 0, ExclusiveLock);
if (!Result)
{
MSG_PRINTF(L"LockRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Read in Master Record.
Result = ReadRecord(hFile, 0, (PVOID)&MasterRecord, sizeof(MASTER_RECORD));
if (!Result)
{
MSG_PRINTF(L"ReadRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (MasterRecord.Header.TypeCode != MASTER_RECORD_TYPE_CODE)
{
MSG_PRINTF(L"Master Record corruption error: wrong typecode!\n");
ErrorExitThread();
}
DBG_PRINTF(L"MasterRecord bitmap (before): ");
PrintBitmap(MasterRecord.Bitmap);
if (Operation != CreateRecord)
{
// Test the bit in the bitmap corresponding to this record.
Exists = TestBit(MasterRecord.Bitmap, *RecNumber);
// Clear the bit if we are deleting the record.
if ((Operation == DeleteRecord) && Exists)
{
ClearBit(MasterRecord.Bitmap, *RecNumber);
}
} else {
// Reserve the first free record.
*RecNumber = ReserveFirstFreeRecord(MasterRecord.Bitmap);
if (*RecNumber != 0)
{
Exists = TRUE;
} else {
Exists = FALSE;
MSG_PRINTF(L"File is full!\n");
}
}
DBG_PRINTF(L"MasterRecord bitmap (after): ");
PrintBitmap(MasterRecord.Bitmap);
if ((Operation != ModifyRecord) && Exists)
{
// Update the Master Record's sequence number.
MasterRecord.Header.SeqNumber++;
// Write Master Record down.
Result = WriteRecord(hFile, 0, (PVOID)&MasterRecord, sizeof(MASTER_RECORD));
if (!Result)
{
MSG_PRINTF(L"WriteRecord (MasterRecord) for CreateRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
}
// Unlock Master Record.
Result = UnlockRecord(hFile, 0);
if (!Result)
{
MSG_PRINTF(L"UnlockRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (!Exists)
{
if (*RecNumber != 0)
{
MSG_PRINTF(L"Record %d not present!\n", *RecNumber);
}
return FALSE;
}
// For record deletion, processing is done and skip to write.
// Otherwise, there is more to do.
if (Operation != DeleteRecord)
{
// Prepare a new record in memory.
Record = PrepareRecord(1);
// Lock the record exclusively.
Result = LockRecord(hFile, *RecNumber, TRUE);
if (!Result)
{
MSG_PRINTF(L"LockRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (Operation == ModifyRecord)
{
// Read the record in from the file if we're modifying it.
Result = ReadRecord(hFile, *RecNumber, Record, RECORD_SIZE);
if (!Result)
{
MSG_PRINTF(L"ReadRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Update record sequence number.
Record->Header.SeqNumber++;
}
// Write to the in-memory record.
WriteData(Record);
// Write the record to the file.
Result = WriteRecord(hFile, *RecNumber, Record, RECORD_SIZE);
if (!Result)
{
MSG_PRINTF(L"WriteRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Unlock the record.
Result = UnlockRecord(hFile, *RecNumber);
if (!Result)
{
MSG_PRINTF(L"UnlockRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Free the record structure.
free(Record);
}
return TRUE;
}
ULONG RandomOption(ULONG NumOpts)
//
// This function returns a random number between 0 and (NumOpts - 1).
// It basically is a random option select.
//
// Arguments:
// NumOpts - Number of options to choose from.
//
// Return value:
// A random option (random ULONG x | 0 <= x < NumOpts).
//
{
UINT Random;
errno_t err;
err = rand_s(&Random);
if (err != 0)
{
MSG_PRINTF(L"rand_s for RandomOption failed with error 0x%08x\n",
err);
}
return Random % NumOpts;
}
DWORD WINAPI WorkerThread(PVOID data)
//
// This is the tight loop executed by each of the threads operating in the file.
// Each thread has its own handle to the same file. After obtaining that handle,
// they go into a tight loop in which a record number and a record operation are
// chosen at random and that operation is then performed in that record.
//
// Arguments:
// Data - PVOID to a string containing the file name (so it can be opened).
//
// Return value:
// It should not return.
//
{
HANDLE hFile;
LPCWSTR FileName = (LPCWSTR)data;
ULONG RecNumber;
OPERATION Operation;
BOOL Result;
UINT i;
hFile = CreateFile(FileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL);
if (hFile == INVALID_HANDLE_VALUE)
{
MSG_PRINTF(L"CreateFile failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Main loop for doing the random operations.
for (i = 0; i < NUM_FILEOPS; i++)
{
RecNumber = RandomOption(NUM_RECORDS);
Operation = (OPERATION)RandomOption(MaxOprRecord);
// Output message as to what action is being attempted.
switch (Operation)
{
case CreateRecord:
MSG_PRINTF(L"attempting record creation.\n");
break;
case ModifyRecord:
MSG_PRINTF(L"attempting modification of record %d.\n", RecNumber);
break;
case DeleteRecord:
MSG_PRINTF(L"attempting deletion of record %d.\n", RecNumber);
break;
}
// Perform the actual operation and handle the result,
// then loop again until done.
Result = OperateOnRecord(hFile, &RecNumber, Operation);
if (Result)
{
switch (Operation)
{
case CreateRecord:
MSG_PRINTF(L"created record %d.\n", RecNumber);
break;
case ModifyRecord:
MSG_PRINTF(L"modified record %d.\n", RecNumber);
break;
case DeleteRecord:
MSG_PRINTF(L"deleted record %d.\n", RecNumber);
break;
}
}
}
CloseHandle(hFile);
MSG_PRINTF(L"%d file operations complete. Exiting thread.\n", i);
return 0;
}
BOOL InitNewFile(LPCWSTR FileName)
//
// This function initializes a file with records. If the file already exists, it
// just returns, assuming it has a valid Master Record on it. If it does not
// exist, a brand new file is created and initialized with a clean Master Record.
//
// Arguments:
// FileName - Name of the file to be initialized.
//
// Return value:
// TRUE if the initialization succeeded, FALSE otherwise.
//
{
HANDLE hFile;
MASTER_RECORD MasterRecord;
DWORD BytesWritten;
DWORD Result;
//
// Create the file or open existing.
//
hFile = CreateFile(FileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
MSG_PRINTF(L"CreateFile failed with error 0x%08x.\n",
GetLastError());
return FALSE;
}
else if (ERROR_ALREADY_EXISTS == GetLastError())
{
// This is ok, simply assume it's a valid file.
// Note that this does not actually test that the file
// is valid for this application. That error is caught later.
CloseHandle(hFile);
return TRUE;
} // The implied "else" is that the handle is a good one.
InitRecord((RECORD_HEADER*)&MasterRecord, TRUE, 0);
Result = WriteFile(hFile,
&MasterRecord,
sizeof(MASTER_RECORD),
&BytesWritten,
NULL);
if (!Result)
{
MSG_PRINTF(L"WriteFile failed with error 0x%08x.\n",
GetLastError());
}
CloseHandle(hFile);
return Result;
}
int __cdecl wmain(int argc, LPCWSTR argv[])
//
// Main function. Reads file name from command line argument, initializes the file
// and starts the worker threads, waiting for them to return.
//
{
HANDLE gThread[NUM_THREADS];
DWORD IdThread;
DWORD ResultCode;
LPCWSTR FileName = NULL;
if (argc != 2) {
wprintf(L"Invalid number of arguments!\n");
wprintf(L"Usage: %ws file_name\n", argv[0]);
return -1;
}
FileName = argv[1];
if (!InitNewFile(FileName))
{
wprintf(L"Unable to initialize the data file %ws.\n", FileName);
}
wprintf(L"Main thread creating %d worker threads for processing.\n",
NUM_THREADS);
for (int i = 0; i < NUM_THREADS; i++)
{
gThread[i] = CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE)WorkerThread,
(PVOID)FileName,
0,
&IdThread);
}
wprintf(L"Main thread waiting for worker threads to exit...\n");
ResultCode = WaitForMultipleObjects(
NUM_THREADS,
gThread,
TRUE,
INFINITE);
wprintf(L"WaitForMultipleObjects returned 0x%08x, execution complete.\n",
ResultCode);
// Do some clean-up.
for (int i = 0; i < NUM_THREADS; i++)
{
CloseHandle(gThread[i]);
}
return 0;
}
Este ejemplo es una aplicación de consola de Windows que ejecuta varios accesos simultáneos a un archivo, todos los bloqueos de intervalo de bytes coordinados mediante una base de datos simple, compuesta por varios registros de un tamaño fijo. Tenga en cuenta que la simultaneidad verdadera depende del número de núcleos de procesador existentes en el sistema host.
Todos los registros tienen los dos primeros campos en común: un código de tipo y un número de secuencia. El código de tipo es uno de los dos códigos: el código "Mstr" hace referencia al tipo MASTER_RECORD y el código "Data" hace referencia a un tipo DATA_RECORD . Solo puede haber una MASTER_RECORD y cero o más DATA_RECORDs. En este ejemplo, los datos contenidos en los registros de datos se generan aleatoriamente. El segundo campo, el número de secuencia, se incrementa cada vez que se modifica un registro.
Cuando se inicia la ejecución, si el archivo de datos aún no existe, se crea e inicializa mediante la función InitNewFile . La función InitNewFile escribe un registro de tipo Master con un mapa de bits vacío al principio. Si el archivo ya existe, se abre; se supone que tiene un registro maestro válido al principio.
Después de que el archivo se haya creado o abierto correctamente, se inician varios subprocesos de trabajo y todos ellos ejecutan un bucle en el que se elige una operación y un registro de forma aleatoria y, a continuación, se intenta esa operación en ese registro. Dado que estas operaciones son aleatorias, no todas se realizan correctamente, pero no son necesariamente errores. La información de estado adecuada se registra en la consola.
Las posibles operaciones son las siguientes: creación de un nuevo registro, modificación de un registro existente o eliminación de un registro existente. La operación de creación examina el mapa de bits para buscar el primer registro libre y asigna ese registro como nuevo registro. La operación de modificación lee el mapa de bits para ver si ese registro existe realmente y, si es así, modifica ese registro. La operación de eliminación borra el bit del mapa de bits correspondiente al registro, liberando el espacio ocupado para la asignación futura. Además, estas operaciones se dividen en dos partes: acceso a MasterRecord, donde se almacenan los metadatos y acceso al propio registro de datos.
Dado que escriben datos en los registros de datos, las operaciones de creación y modificación de registros son las únicas que requieren acceso al registro de datos. Por ese motivo, la región cubierta por el registro se bloquea exclusivamente antes de realizar la operación. Las operaciones de creación y eliminación modifican el mapa de bits, por lo que deben bloquear el registro maestro exclusivamente. Sin embargo, las operaciones de modificación de registros solo necesitan leer el mapa de bits, no escribir en él, para comprobar si el archivo existe. Para esa operación, el registro maestro solo necesita un bloqueo de intervalo de bytes compartido.
Los bloqueos de intervalo de bytes exclusivos impiden el acceso de lectura y escritura de todos los demás identificadores al archivo, y es el motivo por el que se usan al escribir en un registro. Por otro lado, un bloqueo de intervalo de bytes compartido impide el acceso de escritura desde todos los identificadores, incluido el identificador propietario del bloqueo, pero permite el acceso de lectura desde todos ellos.
Para demostrar el uso de bloqueos de intervalo de bytes con el archivo, todas las E/S de este ejemplo, distintas de la inicialización de archivos nuevas, se realizan a través de un identificador de archivo asincrónico. Esto se puede ver en la función IoRecord en los casos ioLock e IoUnlock dentro de la instrucción switch. Las funciones LockFileEx y UnlockFileEx se usan con el modelo de E/S superpuesta pasando una estructura SUPERPUESTA a ellas con el desplazamiento para el inicio del intervalo bloqueado y un evento que se señalará después del bloqueo sobre ese intervalo a menos que la función devuelva inmediatamente.
Después de emitir la solicitud de E/S asincrónica, la siguiente operación de la función IoRecord es esperar a la operación en línea. A menudo, se trata de un escenario subconsulto cuando se desea un rendimiento máximo y se usa aquí por motivos de simplicidad. En las aplicaciones de producción, se prefiere el uso de puertos de finalización de E /S o mecanismos similares porque libera subprocesos para realizar otro procesamiento mientras se completa la E/S.
El ejemplo finaliza después de ejecutar NUM_FILEOPS operaciones aleatorias. Cada subproceso registrará su estado de finalización como una condición de error o una terminación normal. Tenga en cuenta que no todos los subprocesos terminarán al mismo tiempo, dependiendo del número de núcleos de procesador que tenga el sistema host y de la velocidad del subsistema de E/S.