Comment : utiliser SpinWait pour implémenter une opération d'attente en deux phases
L'exemple suivant montre comment utiliser un objet System.Threading.SpinWait pour implémenter une opération d'attente à deux phases. Au cours de la première phase, l'objet de synchronisation, un Latch, tourne pendant quelques cycles pendant qu'il vérifie si le verrou est devenu disponible. Au cours de la deuxième phase, si le verrou devient disponible, la méthode Wait est retournée sans utiliser le System.Threading.ManualResetEvent pour exécuter son attente ; sinon, Wait exécute l'attente.
Exemple
Cet exemple montre une implémentation de base d'une primitive de synchronisation de verrou interne. Vous pouvez utiliser cette structure de données lorsque les temps d'attente sont supposés être très courts. Cet exemple est fourni à des fins de démonstration uniquement. Si vous avez besoin de fonctionnalités de type de verrou dans votre programme, envisagez d'utiliser System.Threading.ManualResetEventSlim.
#Const LOGGING = 1
Imports System
Imports System.Collections.Generic
Imports System.Diagnostics
Imports System.Linq
Imports System.Text
Imports System.Threading
Imports System.Threading.Tasks
Namespace CDS_Spinwait
Class Latch
' 0 = unset, 1 = set
Private m_state As Integer = 0
Private m_ev = New ManualResetEvent(False)
#If LOGGING Then
' For fast logging with minimal impact on latch behavior.
' Spin counts greater than 20 might be encountered depending on machine config.
Dim spinCountLog As Integer()
Private totalKernelWaits As Integer = 0
Public Sub New()
ReDim spinCountLog(19)
End Sub
Public Sub PrintLog()
For i As Integer = 0 To spinCountLog.Length - 1
Console.WriteLine("Wait succeeded with spin count of {0} on {1} attempts", i, spinCountLog(i))
Next
Console.WriteLine("Wait used the kernel event on {0} attempts.", totalKernelWaits)
Console.WriteLine("Logging complete")
End Sub
#End If
Public Sub SetLatch()
' Trace.WriteLine("Setlatch")
Interlocked.Exchange(m_state, 1)
m_ev.Set()
End Sub
Public Sub Wait()
Trace.WriteLine("Wait timeout infinite")
Wait(Timeout.Infinite)
End Sub
Public Function Wait(ByVal timeout As Integer) As Boolean
' Allocated on the stack.
Dim spinner = New SpinWait()
Dim watch As Stopwatch
While (m_state = 0)
' Lazily allocate and start stopwatch to track timeout.
watch = Stopwatch.StartNew()
' Spin only until the SpinWait is ready
' to initiate its own context switch.
If (spinner.NextSpinWillYield = False) Then
spinner.SpinOnce()
' Rather than let SpinWait do a context switch now,
' we initiate the kernel Wait operation, because
' we plan on doing this anyway.
Else
#If LOGGING Then
Interlocked.Increment(totalKernelWaits)
#End If
' Account for elapsed time.
Dim realTimeout As Long = timeout - watch.ElapsedMilliseconds
Debug.Assert(realTimeout <= Integer.MaxValue)
' Do the wait.
If (realTimeout <= 0) Then
Trace.WriteLine("wait timed out.")
Return False
ElseIf m_ev.WaitOne(realTimeout) = False Then
Return False
End If
End If
End While
' Take the latch.
Interlocked.Exchange(m_state, 0)
#If LOGGING Then
Interlocked.Increment(spinCountLog(spinner.Count))
#End If
Return True
End Function
End Class
Class Program
Shared latch = New Latch()
Shared count As Integer = 2
Shared cts = New CancellationTokenSource()
Shared Sub TestMethod()
While (cts.IsCancellationRequested = False And count < Integer.MaxValue - 1)
' Obtain the latch.
If (latch.Wait(50)) Then
' Do the work. Here we vary the workload a slight amount
' to help cause varying spin counts in latch.
Dim d As Double = 0
If (count Mod 2 <> 0) Then
d = Math.Sqrt(count)
End If
Interlocked.Increment(count)
' Release the latch.
latch.SetLatch()
End If
End While
End Sub
Shared Sub Main()
' Demonstrate latch with a simple scenario:
' two threads updating a shared integer and
' accessing a shared StringBuilder. Both operations
' are relatively fast, which enables the latch to
' demonstrate successful waits by spinning only.
latch.SetLatch()
' UI thread. Press 'c' to cancel the loop.
Task.Factory.StartNew(Sub()
Console.WriteLine("Wait a few seconds, then press 'c' to see results.")
If (Console.ReadKey().KeyChar = "c"c) Then
cts.Cancel()
End If
End Sub)
Parallel.Invoke(
Sub() TestMethod(),
Sub() TestMethod(),
Sub() TestMethod()
)
#If LOGGING Then
latch.PrintLog()
#End If
Console.WriteLine(vbCrLf & "To exit, press the Enter key.")
Console.ReadLine()
End Sub
End Class
End Namespace
#define LOGGING
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
namespace CDS_Spinwait
{
class Latch
{
// 0 = unset, 1 = set
private volatile int m_state = 0;
private ManualResetEvent m_ev = new ManualResetEvent(false);
#if LOGGING
// For fast logging with minimal impact on latch behavior.
// Spin counts greater than 20 might be encountered depending on machine config.
private int[] spinCountLog = new int[20];
private volatile int totalKernelWaits = 0;
public void PrintLog()
{
for (int i = 0; i < spinCountLog.Length; i++)
{
Console.WriteLine("Wait succeeded with spin count of {0} on {1} attempts", i, spinCountLog[i]);
}
Console.WriteLine("Wait used the kernel event on {0} attempts.", totalKernelWaits);
Console.WriteLine("Logging complete");
}
#endif
public void Set()
{
// Trace.WriteLine("Set");
m_state = 1;
m_ev.Set();
}
public void Wait()
{
Trace.WriteLine("Wait timeout infinite");
Wait(Timeout.Infinite);
}
public bool Wait(int timeout)
{
// Allocated on the stack.
SpinWait spinner = new SpinWait();
Stopwatch watch;
while (m_state == 0)
{
// Lazily allocate and start stopwatch to track timeout.
watch = Stopwatch.StartNew();
// Spin only until the SpinWait is ready
// to initiate its own context switch.
if (!spinner.NextSpinWillYield)
{
spinner.SpinOnce();
}
// Rather than let SpinWait do a context switch now,
// we initiate the kernel Wait operation, because
// we plan on doing this anyway.
else
{
totalKernelWaits++;
// Account for elapsed time.
int realTimeout = timeout - (int)watch.ElapsedMilliseconds;
// Do the wait.
if (realTimeout <= 0 || !m_ev.WaitOne(realTimeout))
{
Trace.WriteLine("wait timed out.");
return false;
}
}
}
// Take the latch.
m_state = 0;
// totalWaits++;
#if LOGGING
spinCountLog[spinner.Count]++;
#endif
return true;
}
}
class Program
{
static Latch latch = new Latch();
static int count = 2;
static CancellationTokenSource cts = new CancellationTokenSource();
static void TestMethod()
{
while (!cts.IsCancellationRequested)
{
// Obtain the latch.
if (latch.Wait(50))
{
// Do the work. Here we vary the workload a slight amount
// to help cause varying spin counts in latch.
double d = 0;
if (count % 2 != 0)
{
d = Math.Sqrt(count);
}
count++;
// Release the latch.
latch.Set();
}
}
}
static void Main(string[] args)
{
// Demonstrate latch with a simple scenario:
// two threads updating a shared integer and
// accessing a shared StringBuilder. Both operations
// are relatively fast, which enables the latch to
// demonstrate successful waits by spinning only.
latch.Set();
// UI thread. Press 'c' to cancel the loop.
Task.Factory.StartNew(() =>
{
Console.WriteLine("Press 'c' to cancel.");
if (Console.ReadKey().KeyChar == 'c')
{
cts.Cancel();
}
});
Parallel.Invoke(
() => TestMethod(),
() => TestMethod(),
() => TestMethod()
);
#if LOGGING
latch.PrintLog();
#endif
Console.WriteLine("\r\nPress the Enter Key.");
Console.ReadLine();
}
}
}
Le verrou utilise l'objet SpinWait pour tourner sur place uniquement jusqu'à que l'appel suivant à SpinOnce entraîne le SpinWait à générer la tranche horaire du thread. À ce stade, le verrou provoque son propre changement de contexte en appelant WaitOne(Int32, Boolean) sur le ManualResetEvent et en passant le reste de la valeur du délai d'attente.
La sortie d'enregistrement indique à quelle fréquence le verrou interne était en mesure d'améliorer les performances en acquérant le verrou sans utiliser le ManualResetEvent.