loadImage : transformation de chargement d’image d’apprentissage automatique
Charge des données d’image.
Utilisation
loadImage(vars)
Arguments
vars
Liste nommée de vecteurs de caractères des noms de variables d’entrée, et le nom de la variable de sortie. Notez que les variables d’entrée doivent être du même type. Pour les mappages un-à-un entre les variables d’entrée et de sortie, un vecteur de caractères nommé peut être utilisé.
Détails
loadImage
charge des images à partir de chemins d’accès.
Valeur
Un objet maml
définissant la transformation.
Auteur(s)
Microsoft Corporation Microsoft Technical Support
Exemples
train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)
# Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),
mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)
# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),
mlTransformVars = "Path")