Eventi
Ottieni gratuitamente la certificazione in Microsoft Fabric.
19 nov, 23 - 10 dic, 23
Per un periodo di tempo limitato, il team della community di Microsoft Fabric offre buoni per esami DP-600 gratuiti.
Prepara oraQuesto browser non è più supportato.
Esegui l'aggiornamento a Microsoft Edge per sfruttare i vantaggi di funzionalità più recenti, aggiornamenti della sicurezza e supporto tecnico.
Databricks Runtime 16.0 per Machine Learning offre un ambiente pronto per l'apprendimento automatico e l'analisi scientifica dei dati basato su Databricks Runtime 16.0. Databricks Runtime per Machine Learning contiene molte di queste librerie, tra cui TensorFlow, PyTorch, Keras e XGBoost. Databricks Runtime ML include AutoML, uno strumento per eseguire automaticamente il training delle pipeline di Machine Learning. Databricks Runtime ML supporta anche il training di Deep Learning distribuito usando TorchDistributor, DeepSpeed e Ray.
Suggerimento
Per visualizzare le note sulla versione per le versioni di Databricks Runtime che hanno raggiunto la fine del supporto (EoS), vedere Note sulla versione della fine del supporto di Databricks Runtime. Le versioni EoS di Databricks Runtime sono state ritirate e potrebbero non essere aggiornate.
Databricks Runtime 16.0 ML è basato su Databricks Runtime 16.0. Per informazioni sulle novità di Databricks Runtime 16.0, tra cui Apache Spark MLlib e SparkR, vedere le note sulla versione di Databricks Runtime 16.0 .
I pacchetti Python seguenti sono stati aggiunti a Databricks Runtime ML:
AutoML supporta ora i pesi di esempio per la previsione, consentendo di regolare l'importanza di ogni serie temporale per il training di modelli di previsione di serie multi-time. Per altre informazioni, vedere i parametri di previsione per l'API Python AutoML.
È ora possibile usare una vista in Unity Catalog come tabella delle funzionalità. Vedere Usare una vista esistente in Unity Catalog come tabella delle funzionalità.
I pacchetti seguenti inclusi nelle versioni precedenti di Databricks Runtime ML non sono inclusi in Databricks Runtime 16.0 ML:
spark-tensorflow-distributor
Databricks consiglia le sostituzioni seguenti:
tf.distribute.Strategy
per il training distribuito con TensorFlow.L'ambiente di sistema in Databricks Runtime 16.0 ML differisce da Databricks Runtime 16.0 come indicato di seguito:
Le sezioni seguenti elencano le librerie incluse in Databricks Runtime 16.0 ML che differiscono da quelle incluse in Databricks Runtime 16.0.
Databricks Runtime 16.0 ML include le librerie di livello superiore seguenti:
Databricks Runtime 16.0 ML usa virtualenv
per la gestione dei pacchetti Python e include molti pacchetti di Machine Learning più diffusi.
Oltre ai pacchetti specificati nelle sezioni seguenti, Databricks Runtime 16.0 ML include anche i pacchetti seguenti:
Per riprodurre l'ambiente Python di Databricks Runtime ML nell'ambiente virtuale Python locale, scaricare il file di requirements-16.0.txt ed eseguire pip install -r requirements-16.0.txt
. Questo comando installa tutte le librerie open source usate da Databricks Runtime ML, ma non installa librerie sviluppate da Databricks, ad esempio databricks-automl
, databricks-feature-engineering
o il fork di Databricks di hyperopt
.
Library | Versione | Library | Versione | Library | Versione |
---|---|---|---|---|---|
absl-py | 1.0.0 | accelerate | 0.33.0 | aiohttp | 3.9.5 |
aiohttp-cors | 0.7.0 | aiosignal | 1.2.0 | Alembic | 1.13.3 |
tipi annotati | 0.7.0 | anyio | 4.2.0 | argcomplete | 3.5.0 |
argon2-cffi | 21.3.0 | argon2-cffi-bindings | 21.2.0 | freccia | 1.2.3 |
astor | 0.8.1 | asttoken | 2.0.5 | astunparse | 1.6.3 |
async-lru | 2.0.4 | attrs | 23.1.0 | audioread | 3.0.1 |
comando automatico | 2.2.2 | azure-core | 1.31.0 | azure-cosmos | 4.3.1 |
azure-identity | 1.18.0 | azure-storage-blob | 12.23.1 | azure-storage-file-datalake | 12.17.0 |
Babel | 2.11.0 | backoff | 2.2.1 | backports.tarfile | 1.2.0 |
bcrypt | 3.2.0 | beautifulsoup4 | 4.12.3 | black | 24.4.2 |
bleach | 4.1.0 | blinker | 1.7.0 | blis | 0.7.11 |
boto3 | 1.34.69 | botocore | 1.34.69 | Brotli | 1.0.9 |
cachetools | 5.3.3 | catalogue | 2.0.10 | category-encoders | 2.6.3 |
certifi | 2024.6.2 | cffi | 1.16.0 | chardet | 4.0.0 |
charset-normalizer | 2.0.4 | circuitbreaker | 2.0.0 | click | 8.1.7 |
cloudpathlib | 0.19.0 | cloudpickle | 2.2.1 | cmdstanpy | 1.2.4 |
a colori | 0.5.6 | colorlog | 6.8.2 | serv | 0.2.1 |
composer | 0.24.1 | confection | 0.1.5 | configparser | 5.2.0 |
contourpy | 1.2.0 | coolname | 2.2.0 | cryptography | 42.0.5 |
cycler | 0.11.0 | cymem | 2.0.8 | Cython | 3.0.11 |
dacite | 1.8.1 | databricks-automl-runtime | 0.2.21 | databricks-feature-engineering | 0.7.0 |
databricks-sdk | 0.30.0 | datasets | 2.20.0 | dbl-tempo | 0.1.26 |
dbus-python | 1.3.2 | debugpy | 1.6.7 | decorator | 5.1.1 |
deepspeed | 0.14.4 | defusedxml | 0.7.1 | Deprecato | 1.2.14 |
dill | 0.3.8 | distlib | 0.3.8 | dm-tree | 0.1.8 |
docstring-to-markdown | 0.11 | entrypoints | 0.4 | evaluate | 0.4.2 |
executing | 0.8.3 | facet-overview | 1.1.1 | Farama-Notifications | 0.0.4 |
fastjsonschema | 2.20.0 | fasttext-wheel | 0.9.2 | filelock | 3.13.1 |
Flask | 2.2.5 | flatbuffers | 24.3.25 | fonttools | 4.51.0 |
fqdn | 1.5.1 | frozenlist | 1.4.0 | fsspec | 2023.5.0 |
future | 0.18.3 | gast | 0.4.0 | gitdb | 4.0.11 |
GitPython | 3.1.37 | google-api-core | 2.20.0 | google-auth | 2.21.0 |
google-auth-oauthlib | 1.0.0 | google-cloud-core | 2.4.1 | google-cloud-storage | 2.10.0 |
google-crc32c | 1.6.0 | google-pasta | 0.2.0 | google-resumable-media | 2.7.2 |
googleapis-common-protos | 1.65.0 | gql | 3.5.0 | graphql-core | 3.2.4 |
greenlet | 3.0.1 | grpcio | 1.60.0 | grpcio-status | 1.60.0 |
gunicorn | 20.1.0 | gviz-api | 1.10.0 | gymnasium | 0.28.1 |
h11 | 0.14.0 | h5py | 3.11.0 | hjson | 3.1.0 |
holidays | 0,54 | htmlmin | 0.1.12 | httpcore | 1.0.5 |
httplib2 | 0.20.4 | httpx | 0.27.2 | huggingface-hub | 0.24.5 |
idna | 3.7 | ImageHash | 4.3.1 | imageio | 2.33.1 |
sbilanciato-learn | 0.12.3 | importlib-metadata | 6.0.0 | importlib_resources | 6.4.5 |
flettere | 7.3.1 | ipyflow-core | 0.0.201 | ipykernel | 6.28.0 |
ipython | 8.25.0 | ipython-genutils | 0.2.0 | ipywidgets | 7.7.2 |
isodate | 0.6.1 | isoduration | 20.11.0 | itsdangerous | 2.2.0 |
jaraco.context | 5.3.0 | jaraco.functools | 4.0.1 | jaraco.text | 3.12.1 |
jax jumpy | 1.0.0 | jedi | 0.19.1 | Jinja2 | 3.1.4 |
jiter | 0.5.0 | jmespath | 1.0.1 | joblib | 1.4.2 |
joblibspark | 0.5.1 | json5 | 0.9.6 | jsonpatch | 1.33 |
jsonpointer | 3.0.0 | jsonschema | 4.19.2 | jsonschema-specifications | 2023.7.1 |
jupyter-events | 0.10.0 | jupyter-lsp | 2.2.0 | jupyter_client | 8.6.0 |
jupyter_core | 5.7.2 | jupyter_server | 2.14.1 | jupyter_server_terminals | 0.4.4 |
jupyterlab | 4.0.11 | jupyterlab-pygments | 0.1.2 | jupyterlab_server | 2.25.1 |
keras | 3.5.0 | kiwisolver | 1.4.4 | langchain | 0.2.12 |
langchain-core | 0.2.41 | langchain-text-splitters | 0.2.4 | langcodes | 3.4.1 |
langsmith | 0.1.129 | language_data | 1.2.0 | launchpadlib | 1.11.0 |
lazr.restfulclient | 0.14.6 | lazr.uri | 1.0.6 | lazy_loader | 0.4 |
libclang | 15.0.6.1 | librosa | 0.10.2 | lightgbm | 4.5.0 |
fulmine-utilità | 0.11.7 | linkify-it-py | 2.0.0 | llvmlite | 0.42.0 |
lz4 | 4.3.2 | Mako | 1.2.0 | marisa-trie | 1.2.0 |
Markdown | 3.4.1 | markdown-it-py | 2.2.0 | MarkupSafe | 2.1.3 |
matplotlib | 3.8.4 | matplotlib-inline | 0.1.6 | mccabe | 0.7.0 |
mdit-py-plugins | 0.3.0 | mdurl | 0.1.0 | memray | 1.14.0 |
mistune | 2.0.4 | ml-dtypes | 0.4.1 | mlflow-skinny | 2.15.1 |
more-itertools | 10.3.0 | mosaicml-cli | 0.6.41 | mosaicml-streaming | 0.8.0 |
mpmath | 1.3.0 | msal | 1.31.0 | msal-extensions | 1.2.0 |
msgpack | 1.1.0 | multidict | 6.0.4 | multimethod | 1.12 |
multiprocess | 0.70.16 | murmurhash | 1.0.10 | mypy | 1.10.0 |
mypy-extensions | 1.0.0 | namex | 0.0.8 | nbclient | 0.8.0 |
nbconvert | 7.10.0 | nbformat | 5.9.2 | nest-asyncio | 1.6.0 |
networkx | 3.2.1 | ninja | 1.11.1.1 | nltk | 3.8.1 |
nodeenv | 1.9.1 | notebook | 7.0.8 | notebook_shim | 0.2.3 |
numba | 0.59.1 | numpy | 1.26.4 | nvidia-ml-py | 12.560.30 |
oauthlib | 3.2.0 | oci | 2.135.0 | openai | 1.40.2 |
opencensus | 0.11.4 | opencensus-context | 0.1.3 | opentelemetry-api | 1.27.0 |
opentelemetry-sdk | 1.27.0 | opentelemetry-semantic-conventions | 0.48b0 | opt_einsum | 3.4.0 |
optree | 0.12.1 | optuna | 3.6.1 | optuna-integration | 3.6.0 |
orjson | 3.10.7 | override | 7.4.0 | packaging | 24.1 |
pandas | 1.5.3 | pandocfilters | 1.5.0 | paramiko | 3.4.0 |
parso | 0.8.3 | pathspec | 0.10.3 | patsy | 0.5.6 |
pexpect | 4.8.0 | phik | 0.12.4 | pillow | 10.3.0 |
pip | 24.2 | platformdirs | 3.10.0 | plotly | 5.22.0 |
pluggy | 1.0.0 | pmdarima | 2.0.4 | pooch | 1.8.2 |
portalocker | 2.10.1 | preshed | 3.0.9 | prometheus-client | 0.14.1 |
prompt-toolkit | 3.0.43 | prophet | 1.1.5 | proto-plus | 1.24.0 |
protobuf | 4.24.1 | psutil | 5.9.0 | psycopg2 | 2.9.3 |
ptyprocess | 0.7.0 | pure-eval | 0.2.2 | py-cpuinfo | 9.0.0 |
py-spy | 0.3.14 | pyarrow | 15.0.2 | pyarrow-hotfix | 0,6 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | PyBind11 | 2.13.6 |
pyccolo | 0.0.65 | pycparser | 2.21 | pydantic | 2.8.2 |
pydantic_core | 2.20.1 | pyflakes | 3.2.0 | Pygments | 2.15.1 |
PyGObject | 3.48.2 | PyJWT | 2.7.0 | PyNaCl | 1.5.0 |
pyodbc | 5.0.1 | pyOpenSSL | 24.0.0 | pyparsing | 3.0.9 |
pyright | 1.1.294 | pytesseract | 0.3.10 | python-dateutil | 2.9.0.post0 |
python-editor | 1.0.4 | python-json-logger | 2.0.7 | python-lsp-jsonrpc | 1.1.2 |
python-lsp-server | 1.10.0 | python-snappy | 0.6.1 | pytoolconfig | 1.2.6 |
pytorch-ranger | 0.1.1 | pytz | 2024.1 | PyWavelets | 1.5.0 |
PyYAML | 6.0.1 | pyzmq | 25.1.2 | interrogatorio | 1.10.0 |
ray | 2.35.0 | referencing | 0.30.2 | regex | 2023.10.3 |
requests | 2.32.2 | requests-oauthlib | 1.3.1 | rfc3339-validator | 0.1.4 |
rfc3986-validator | 0.1.1 | rich | 13.3.5 | rope | 1.12.0 |
rpds-py | 0.10.6 | rsa | 4.9 | michelemel.yaml | 0.18.6 |
michelemel.yaml.clib | 0.2.8 | s3transfer | 0.10.2 | safetensors | 0.4.4 |
scikit-image | 0.23.2 | scikit-learn | 1.4.2 | scipy | 1.13.1 |
seaborn | 0.13.2 | Send2Trash | 1.8.2 | sentence-transformers | 3.0.1 |
sentencepiece | 0.2.0 | setuptools | 74.0.0 | shap | 0.46.0 |
shellingham | 1.5.4 | simplejson | 3.17.6 | six | 1.16.0 |
slicer | 0.0.8 | smart-open | 5.2.1 | smmap | 5.0.0 |
sniffio | 1.3.0 | soundfile | 0.12.1 | soupsieve | 2.5 |
soxr | 0.5.0.post1 | spaCy | 3.7.5 | spacy-legacy | 3.0.12 |
spacy-logger | 1.0.5 | SQLAlchemy | 2.0.30 | sqlparse | 0.4.2 |
srsly | 2.4.8 | ssh-import-id | 5.11 | stack-data | 0.2.0 |
stanio | 0.5.1 | statsmodels | 0.14.2 | sympy | 1.12 |
tabulate | 0.9.0 | tangled-up-in-unicode | 0.2.0 | tenacity | 8.2.2 |
tensorboard | 2.17.0 | tensorboard-data-server | 0.7.2 | tensorboard-plugin-profile | 2.17.0 |
tensorboardX | 2.6.2.2 | tensorflow | 2.17.0 | tensorflow-estimator | 2.15.0 |
termcolor | 2.4.0 | terminado | 0.17.1 | textual | 0.81.0 |
tf_keras | 2.17.0 | thinc | 8.2.5 | threadpoolctl | 2.2.0 |
tifffile | 2023.4.12 | tiktoken | 0.7.0 | tinycss2 | 1.2.1 |
tokenize-rt | 4.2.1 | tokenizers | 0.19.1 | tomli | 2.0.1 |
torch | 2.4.0+CPU | torch-optimizer | 0.3.0 | torcheval | 0.0.7 |
torchmetrics | 1.4.0.post0 | torchvision | 0.19.0+CPU | tornado | 6.4.1 |
tqdm | 4.66.4 | traitlets | 5.14.3 | Convertitori | 4.44.0 |
typeguard | 4.3.0 | Typer | 0.12.5 | types-protobuf | 3.20.3 |
types-psutil | 5.9.0 | types-pytz | 2023.3.1.1 | types-PyYAML | 6.0.0 |
richieste di tipi | 2.31.0.0 | types-setuptools | 68.0.0.0 | tipi-sei | 1.16.0 |
types-urllib3 | 1.26.25.14 | typing_extensions | 4.11.0 | uc-micro-py | 1.0.1 |
ujson | 5.10.0 | aggiornamenti automatici | 0.1 | Modello URI | 1.3.0 |
urllib3 | 1.26.16 | validator | 0.34.0 | virtualenv | 20.26.2 |
visions | 0.7.5 | wadllib | 1.3.6 | wasabi | 1.1.3 |
wcwidth | 0.2.5 | weasel | 0.4.1 | webcolors | 24.8.0 |
webencodings | 0.5.1 | websocket-client | 1.8.0 | websockets | 11.0.3 |
Werkzeug | 3.0.3 | whatthepatch | 1.0.2 | wheel | 0.43.0 |
wordcloud | 1.9.3 | wrapt | 1.14.1 | xgboost | 2.0.3 |
xgboost-ray | 0.1.19 | xxhash | 3.4.1 | yapf | 0.33.0 |
yarl | 1.9.3 | ydata-profiling | 4.9.0 | zipp | 3.17.0 |
zstd | 1.5.5.1 |
Library | Versione | Library | Versione | Library | Versione |
---|---|---|---|---|---|
absl-py | 1.0.0 | accelerate | 0.33.0 | aiohttp | 3.9.5 |
aiohttp-cors | 0.7.0 | aiosignal | 1.2.0 | tipi annotati | 0.7.0 |
anyio | 4.2.0 | argcomplete | 3.5.0 | argon2-cffi | 21.3.0 |
argon2-cffi-bindings | 21.2.0 | freccia | 1.2.3 | astor | 0.8.1 |
asttoken | 2.0.5 | astunparse | 1.6.3 | async-lru | 2.0.4 |
attrs | 23.1.0 | audioread | 3.0.1 | comando automatico | 2.2.2 |
azure-core | 1.31.0 | azure-cosmos | 4.3.1 | azure-identity | 1.18.0 |
azure-storage-blob | 12.23.1 | azure-storage-file-datalake | 12.17.0 | Babel | 2.11.0 |
backoff | 2.2.1 | backports.tarfile | 1.2.0 | bcrypt | 3.2.0 |
beautifulsoup4 | 4.12.3 | black | 24.4.2 | bleach | 4.1.0 |
blinker | 1.7.0 | blis | 0.7.11 | boto3 | 1.34.69 |
botocore | 1.34.69 | Brotli | 1.0.9 | cachetools | 5.3.3 |
catalogue | 2.0.10 | category-encoders | 2.6.3 | certifi | 2024.6.2 |
cffi | 1.16.0 | chardet | 4.0.0 | charset-normalizer | 2.0.4 |
circuitbreaker | 2.0.0 | click | 8.1.7 | cloudpathlib | 0.19.0 |
cloudpickle | 2.2.1 | cmdstanpy | 1.2.4 | a colori | 0.5.6 |
colorlog | 6.8.2 | serv | 0.2.1 | composer | 0.24.1 |
confection | 0.1.5 | configparser | 5.2.0 | contourpy | 1.2.0 |
coolname | 2.2.0 | cryptography | 42.0.5 | cycler | 0.11.0 |
cymem | 2.0.8 | Cython | 3.0.11 | dacite | 1.8.1 |
databricks-automl-runtime | 0.2.21 | databricks-feature-engineering | 0.7.0 | databricks-sdk | 0.30.0 |
datasets | 2.20.0 | dbl-tempo | 0.1.26 | dbus-python | 1.3.2 |
debugpy | 1.6.7 | decorator | 5.1.1 | deepspeed | 0.14.4 |
defusedxml | 0.7.1 | Deprecato | 1.2.14 | dill | 0.3.8 |
distlib | 0.3.8 | dm-tree | 0.1.8 | docstring-to-markdown | 0.11 |
einops | 0.8.0 | entrypoints | 0.4 | evaluate | 0.4.2 |
executing | 0.8.3 | facet-overview | 1.1.1 | Farama-Notifications | 0.0.4 |
fastjsonschema | 2.20.0 | fasttext-wheel | 0.9.2 | filelock | 3.13.1 |
flash_attn | 2.5.6 | Flask | 2.2.5 | flatbuffers | 24.3.25 |
fonttools | 4.51.0 | fqdn | 1.5.1 | frozenlist | 1.4.0 |
fsspec | 2023.5.0 | future | 0.18.3 | gast | 0.4.0 |
gitdb | 4.0.11 | GitPython | 3.1.37 | google-api-core | 2.20.0 |
google-auth | 2.21.0 | google-auth-oauthlib | 1.0.0 | google-cloud-core | 2.4.1 |
google-cloud-storage | 2.10.0 | google-crc32c | 1.6.0 | google-pasta | 0.2.0 |
google-resumable-media | 2.7.2 | googleapis-common-protos | 1.65.0 | gql | 3.5.0 |
graphql-core | 3.2.4 | greenlet | 3.0.1 | grpcio | 1.60.0 |
grpcio-status | 1.60.0 | gunicorn | 20.1.0 | gviz-api | 1.10.0 |
gymnasium | 0.28.1 | h11 | 0.14.0 | h5py | 3.11.0 |
hjson | 3.1.0 | holidays | 0,54 | htmlmin | 0.1.12 |
httpcore | 1.0.5 | httplib2 | 0.20.4 | httpx | 0.27.2 |
huggingface-hub | 0.24.5 | idna | 3.7 | ImageHash | 4.3.1 |
imageio | 2.33.1 | sbilanciato-learn | 0.12.3 | importlib-metadata | 6.0.0 |
importlib_resources | 6.4.5 | flettere | 7.3.1 | ipyflow-core | 0.0.201 |
ipykernel | 6.28.0 | ipython | 8.25.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.7.2 | isodate | 0.6.1 | isoduration | 20.11.0 |
itsdangerous | 2.2.0 | jaraco.context | 5.3.0 | jaraco.functools | 4.0.1 |
jaraco.text | 3.12.1 | jax jumpy | 1.0.0 | jedi | 0.19.1 |
Jinja2 | 3.1.4 | jiter | 0.5.0 | jmespath | 1.0.1 |
joblib | 1.4.2 | joblibspark | 0.5.1 | json5 | 0.9.6 |
jsonpatch | 1.33 | jsonpointer | 3.0.0 | jsonschema | 4.19.2 |
jsonschema-specifications | 2023.7.1 | jupyter-events | 0.10.0 | jupyter-lsp | 2.2.0 |
jupyter_client | 8.6.0 | jupyter_core | 5.7.2 | jupyter_server | 2.14.1 |
jupyter_server_terminals | 0.4.4 | jupyterlab | 4.0.11 | jupyterlab-pygments | 0.1.2 |
jupyterlab_server | 2.25.1 | keras | 3.5.0 | kiwisolver | 1.4.4 |
langchain | 0.2.12 | langchain-core | 0.2.41 | langchain-text-splitters | 0.2.4 |
langcodes | 3.4.1 | langsmith | 0.1.129 | language_data | 1.2.0 |
launchpadlib | 1.11.0 | lazr.restfulclient | 0.14.6 | lazr.uri | 1.0.6 |
lazy_loader | 0.4 | libclang | 15.0.6.1 | librosa | 0.10.2 |
lightgbm | 4.5.0 | fulmine-utilità | 0.11.7 | linkify-it-py | 2.0.0 |
llvmlite | 0.42.0 | lz4 | 4.3.2 | Mako | 1.2.0 |
marisa-trie | 1.2.0 | Markdown | 3.4.1 | markdown-it-py | 2.2.0 |
MarkupSafe | 2.1.3 | matplotlib | 3.8.4 | matplotlib-inline | 0.1.6 |
mccabe | 0.7.0 | mdit-py-plugins | 0.3.0 | mdurl | 0.1.0 |
memray | 1.14.0 | mistune | 2.0.4 | ml-dtypes | 0.4.1 |
mlflow-skinny | 2.15.1 | more-itertools | 10.3.0 | mosaicml-cli | 0.6.41 |
mosaicml-streaming | 0.8.0 | mpmath | 1.3.0 | msal | 1.31.0 |
msal-extensions | 1.2.0 | msgpack | 1.1.0 | multidict | 6.0.4 |
multimethod | 1.12 | multiprocess | 0.70.16 | murmurhash | 1.0.10 |
mypy | 1.10.0 | mypy-extensions | 1.0.0 | namex | 0.0.8 |
nbclient | 0.8.0 | nbconvert | 7.10.0 | nbformat | 5.9.2 |
nest-asyncio | 1.6.0 | networkx | 3.2.1 | ninja | 1.11.1.1 |
nltk | 3.8.1 | nodeenv | 1.9.1 | notebook | 7.0.8 |
notebook_shim | 0.2.3 | numba | 0.59.1 | numpy | 1.26.4 |
nvidia-cublas-cu12 | 12.4.2.65 | nvidia-cuda-cupti-cu12 | 12.4.99 | nvidia-cuda-nvrtc-cu12 | 12.4.99 |
nvidia-cuda-runtime-cu12 | 12.4.99 | nvidia-cudnn-cu12 | 9.1.0.70 | nvidia-cufft-cu12 | 11.2.0.44 |
nvidia-curand-cu12 | 10.3.5.119 | nvidia-cusolver-cu12 | 11.6.0.99 | nvidia-cusparse-cu12 | 12.3.0.142 |
nvidia-ml-py | 12.560.30 | nvidia-nccl-cu12 | 2.20.5 | nvidia-nvjitlink-cu12 | 12.4.99 |
nvidia-nvtx-cu12 | 12.4.99 | oauthlib | 3.2.0 | oci | 2.135.0 |
openai | 1.40.2 | opencensus | 0.11.4 | opencensus-context | 0.1.3 |
opentelemetry-api | 1.27.0 | opentelemetry-sdk | 1.27.0 | opentelemetry-semantic-conventions | 0.48b0 |
opt_einsum | 3.4.0 | optree | 0.12.1 | optuna | 3.6.1 |
optuna-integration | 3.6.0 | orjson | 3.10.7 | override | 7.4.0 |
packaging | 24.1 | pandas | 1.5.3 | pandocfilters | 1.5.0 |
paramiko | 3.4.0 | parso | 0.8.3 | pathspec | 0.10.3 |
patsy | 0.5.6 | pexpect | 4.8.0 | phik | 0.12.4 |
pillow | 10.3.0 | pip | 24.2 | platformdirs | 3.10.0 |
plotly | 5.22.0 | pluggy | 1.0.0 | pmdarima | 2.0.4 |
pooch | 1.8.2 | portalocker | 2.10.1 | preshed | 3.0.9 |
prometheus-client | 0.14.1 | prompt-toolkit | 3.0.43 | prophet | 1.1.5 |
proto-plus | 1.24.0 | protobuf | 4.24.1 | psutil | 5.9.0 |
psycopg2 | 2.9.3 | ptyprocess | 0.7.0 | pure-eval | 0.2.2 |
py-cpuinfo | 9.0.0 | py-spy | 0.3.14 | pyarrow | 15.0.2 |
pyarrow-hotfix | 0,6 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
PyBind11 | 2.13.6 | pyccolo | 0.0.65 | pycparser | 2.21 |
pydantic | 2.8.2 | pydantic_core | 2.20.1 | pyflakes | 3.2.0 |
Pygments | 2.15.1 | PyGObject | 3.48.2 | PyJWT | 2.7.0 |
PyNaCl | 1.5.0 | pyodbc | 5.0.1 | pyOpenSSL | 24.0.0 |
pyparsing | 3.0.9 | pyright | 1.1.294 | pytesseract | 0.3.10 |
python-dateutil | 2.9.0.post0 | python-editor | 1.0.4 | python-json-logger | 2.0.7 |
python-lsp-jsonrpc | 1.1.2 | python-lsp-server | 1.10.0 | python-snappy | 0.6.1 |
pytoolconfig | 1.2.6 | pytorch-ranger | 0.1.1 | pytz | 2024.1 |
PyWavelets | 1.5.0 | PyYAML | 6.0.1 | pyzmq | 25.1.2 |
interrogatorio | 1.10.0 | ray | 2.35.0 | referencing | 0.30.2 |
regex | 2023.10.3 | requests | 2.32.2 | requests-oauthlib | 1.3.1 |
rfc3339-validator | 0.1.4 | rfc3986-validator | 0.1.1 | rich | 13.3.5 |
rope | 1.12.0 | rpds-py | 0.10.6 | rsa | 4.9 |
michelemel.yaml | 0.18.6 | michelemel.yaml.clib | 0.2.8 | s3transfer | 0.10.2 |
safetensors | 0.4.4 | scikit-image | 0.23.2 | scikit-learn | 1.4.2 |
scipy | 1.13.1 | seaborn | 0.13.2 | Send2Trash | 1.8.2 |
sentence-transformers | 3.0.1 | sentencepiece | 0.2.0 | setuptools | 74.0.0 |
shap | 0.46.0 | shellingham | 1.5.4 | simplejson | 3.17.6 |
six | 1.16.0 | slicer | 0.0.8 | smart-open | 5.2.1 |
smmap | 5.0.0 | sniffio | 1.3.0 | soundfile | 0.12.1 |
soupsieve | 2.5 | soxr | 0.5.0.post1 | spaCy | 3.7.5 |
spacy-legacy | 3.0.12 | spacy-logger | 1.0.5 | SQLAlchemy | 2.0.30 |
sqlparse | 0.4.2 | srsly | 2.4.8 | ssh-import-id | 5.11 |
stack-data | 0.2.0 | stanio | 0.5.1 | statsmodels | 0.14.2 |
sympy | 1.12 | tabulate | 0.9.0 | tangled-up-in-unicode | 0.2.0 |
tenacity | 8.2.2 | tensorboard | 2.17.0 | tensorboard-data-server | 0.7.2 |
tensorboard-plugin-profile | 2.17.0 | tensorboardX | 2.6.2.2 | tensorflow | 2.17.0 |
tensorflow-estimator | 2.15.0 | termcolor | 2.4.0 | terminado | 0.17.1 |
textual | 0.81.0 | tf_keras | 2.17.0 | thinc | 8.2.5 |
threadpoolctl | 2.2.0 | tifffile | 2023.4.12 | tiktoken | 0.7.0 |
tinycss2 | 1.2.1 | tokenize-rt | 4.2.1 | tokenizers | 0.19.1 |
tomli | 2.0.1 | torch | 2.4.0+cu124 | torch-optimizer | 0.3.0 |
torcheval | 0.0.7 | torchmetrics | 1.4.0.post0 | torchvision | 0.19.0+cu124 |
tornado | 6.4.1 | tqdm | 4.66.4 | traitlets | 5.14.3 |
Convertitori | 4.44.0 | triton | 3.0.0 | typeguard | 4.3.0 |
Typer | 0.12.5 | types-protobuf | 3.20.3 | types-psutil | 5.9.0 |
types-pytz | 2023.3.1.1 | types-PyYAML | 6.0.0 | richieste di tipi | 2.31.0.0 |
types-setuptools | 68.0.0.0 | tipi-sei | 1.16.0 | types-urllib3 | 1.26.25.14 |
typing_extensions | 4.11.0 | uc-micro-py | 1.0.1 | ujson | 5.10.0 |
aggiornamenti automatici | 0.1 | Modello URI | 1.3.0 | urllib3 | 1.26.16 |
validator | 0.34.0 | virtualenv | 20.26.2 | visions | 0.7.5 |
wadllib | 1.3.6 | wasabi | 1.1.3 | wcwidth | 0.2.5 |
weasel | 0.4.1 | webcolors | 24.8.0 | webencodings | 0.5.1 |
websocket-client | 1.8.0 | websockets | 11.0.3 | Werkzeug | 3.0.3 |
whatthepatch | 1.0.2 | wheel | 0.43.0 | wordcloud | 1.9.3 |
wrapt | 1.14.1 | xgboost | 2.0.3 | xgboost-ray | 0.1.19 |
xxhash | 3.4.1 | yapf | 0.33.0 | yarl | 1.9.3 |
ydata-profiling | 4.9.0 | zipp | 3.17.0 | zstd | 1.5.5.1 |
Le librerie R sono identiche alle librerie R in Databricks Runtime 16.0.
Oltre alle librerie Java e Scala in Databricks Runtime 16.0, Databricks Runtime 16.0 ML contiene i file JAR seguenti:
ID gruppo | ID artefatto | Versione |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.dmlc | xgboost4j-spark_2.12 | 1.7.3 |
ml.dmlc | xgboost4j_2.12 | 1.7.3 |
org.graphframes | graphframes_2.12 | 0.8.4-db1-spark3.5 |
org.mlflow | mlflow-client | 2.15.1 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
ID gruppo | ID artefatto | Versione |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.7.3 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.7.3 |
org.graphframes | graphframes_2.12 | 0.8.4-db1-spark3.5 |
org.mlflow | mlflow-client | 2.15.1 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Eventi
Ottieni gratuitamente la certificazione in Microsoft Fabric.
19 nov, 23 - 10 dic, 23
Per un periodo di tempo limitato, il team della community di Microsoft Fabric offre buoni per esami DP-600 gratuiti.
Prepara oraFormazione
Percorso di apprendimento
Progettazione dell'intelligenza artificiale in ambiente perimetrale - Training
Questo percorso di apprendimento ha lo scopo di spiegare agli studenti come distribuire intelligenza artificiale nei dispositivi perimetrali usando servizi di Azure.