Procedura: Usare parallel_invoke per eseguire operazioni in parallelo

Questo esempio illustra come usare l'algoritmo concurrency::p arallel_invoke per migliorare le prestazioni di un programma che esegue più operazioni su un'origine dati condivisa. Poiché nessuna operazione modifica l'origine, può essere eseguita in parallelo in modo semplice.

Esempio: Creare, inizializzare ed eseguire operazioni su una variabile

Si consideri l'esempio di codice seguente che crea una variabile di tipo MyDataType, chiama una funzione per inizializzare tale variabile e quindi esegue più operazioni lunghe su tali dati.

MyDataType data;
initialize_data(data);

lengthy_operation1(data);
lengthy_operation2(data);
lengthy_operation3(data);

Se le lengthy_operation1funzioni , lengthy_operation2e lengthy_operation3 non modificano la MyDataType variabile, queste funzioni possono essere eseguite in parallelo senza modifiche aggiuntive.

Esempio: Eseguire l'esempio precedente in parallelo

Nell'esempio seguente viene modificato l'esempio precedente per l'esecuzione in parallelo. L'algoritmo parallel_invoke esegue ogni attività in parallelo e restituisce al termine di tutte le attività.

MyDataType data;
initialize_data(data);

concurrency::parallel_invoke(
   [&data] { lengthy_operation1(data); },
   [&data] { lengthy_operation2(data); },
   [&data] { lengthy_operation3(data); }
);

Esempio: eseguire più operazioni su un file scaricato

L'esempio seguente scarica Iliad da Homer da gutenberg.org ed esegue più operazioni su tale file. L'esempio esegue prima queste operazioni in modo seriale e quindi esegue le stesse operazioni in parallelo.

// parallel-word-mining.cpp
// compile with: /EHsc /MD /DUNICODE /D_AFXDLL
#define _WIN32_WINNT 0x0501
#include <afxinet.h>
#include <ppl.h>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include <algorithm>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds 
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
   __int64 begin = GetTickCount();
   f();
   return GetTickCount() - begin;
}

// Downloads the file at the given URL.
CString get_http_file(CInternetSession& session, const CString& url);

// Adds each word in the provided string to the provided vector of strings.
void make_word_list(const wstring& text, vector<wstring>& words);

// Finds the most common words whose length are greater than or equal to the 
// provided minimum. 
vector<pair<wstring, size_t>> find_common_words(const vector<wstring>& words, 
   size_t min_length, size_t count);

// Finds the longest sequence of words that have the same first letter.
vector<wstring> find_longest_sequence(const vector<wstring>& words);

// Finds all pairs of palindromes that appear in the provided collection
// of words.
vector<pair<wstring, wstring>> find_palindromes(const vector<wstring>& words,
   size_t min_length);
 
int wmain()
{  
   // Manages the network connection.
   CInternetSession session(L"Microsoft Internet Browser");

   // Download 'The Iliad' from gutenberg.org.
   wcout << L"Downloading 'The Iliad'..." << endl;
   wstring file = get_http_file(session, L"http://www.gutenberg.org/files/6130/6130-0.txt");
   wcout << endl;

   // Convert the text to a list of individual words.
   vector<wstring> words;
   make_word_list(file, words);
   
   // Compare the time that it takes to perform several operations on the data
   // serially and in parallel.
   __int64 elapsed;

   vector<pair<wstring, size_t>> common_words;
   vector<wstring> longest_sequence;   
   vector<pair<wstring, wstring>> palindromes;

   wcout << L"Running serial version...";
   elapsed = time_call([&] {
      common_words = find_common_words(words, 5, 9);
      longest_sequence = find_longest_sequence(words);
      palindromes = find_palindromes(words, 5);
   });
   wcout << L" took " << elapsed << L" ms." << endl;

   wcout << L"Running parallel version...";
   elapsed = time_call([&] {
      parallel_invoke(         
         [&] { common_words = find_common_words(words, 5, 9); },
         [&] { longest_sequence = find_longest_sequence(words); },
         [&] { palindromes = find_palindromes(words, 5); }
      );
   });
   wcout << L" took " << elapsed << L" ms." << endl;
   wcout << endl;

   // Print results.

   wcout << L"The most common words that have five or more letters are:" 
         << endl;
   for_each(begin(common_words), end(common_words), 
      [](const pair<wstring, size_t>& p) {
         wcout << L"   " << p.first << L" (" << p.second << L")" << endl; 
      });

   wcout << L"The longest sequence of words that have the same first letter is:" 
         << endl << L"   ";
   for_each(begin(longest_sequence), end(longest_sequence), 
      [](const wstring& s) {
         wcout << s << L' '; 
      });
   wcout << endl;

   wcout << L"The following palindromes appear in the text:" << endl;
   for_each(begin(palindromes), end(palindromes), 
      [](const pair<wstring, wstring>& p) {
         wcout << L"   "  << p.first << L" " << p.second << endl;
      });
}

// Downloads the file at the given URL.
CString get_http_file(CInternetSession& session, const CString& url)
{
   CString result;

   // Reads data from an HTTP server.
   CHttpFile* http_file = NULL;

   try
   {
      // Open URL.
      http_file = reinterpret_cast<CHttpFile*>(session.OpenURL(url, 1));

      // Read the file.
      if(http_file != NULL)
      {           
         UINT bytes_read;
         do
         {
            char buffer[10000];
            bytes_read = http_file->Read(buffer, sizeof(buffer));
            result += buffer;
         }
         while (bytes_read > 0);
      }
    }
   catch (CInternetException)
   {
      // TODO: Handle exception
   }

   // Clean up and return.
   delete http_file;

   return result;
}

// Adds each word in the provided string to the provided vector of strings.
void make_word_list(const wstring& text, vector<wstring>& words)
{
   // Add continuous sequences of alphanumeric characters to the 
   // string vector. 
   wstring current_word;
   for_each(begin(text), end(text), [&](wchar_t ch) {
      if (!iswalnum(ch))
      {
         if (current_word.length() > 0)
         {
            words.push_back(current_word);
            current_word.clear();
         }
      }
      else
      {
         current_word += ch;
      }
   });
}

// Finds the most common words whose length are greater than or equal to the 
// provided minimum. 
vector<pair<wstring, size_t>> find_common_words(const vector<wstring>& words, 
   size_t min_length, size_t count)
{
   typedef pair<wstring, size_t> pair;

   // Counts the occurrences of each word.
   map<wstring, size_t> counts;

   for_each(begin(words), end(words), [&](const wstring& word) {
      // Increment the count of words that are at least the minimum length.
      if (word.length() >= min_length)
      {
         auto find = counts.find(word);
         if (find != end(counts))
            find->second++;
         else
            counts.insert(make_pair(word, 1));
      }
   });

   // Copy the contents of the map to a vector and sort the vector by
   // the number of occurrences of each word.
   vector<pair> wordvector;
   copy(begin(counts), end(counts), back_inserter(wordvector));

   sort(begin(wordvector), end(wordvector), [](const pair& x, const pair& y) {
      return x.second > y.second;
   });

   size_t size = min(wordvector.size(), count);
   wordvector.erase(begin(wordvector) + size, end(wordvector));
   
   return wordvector;
}

// Finds the longest sequence of words that have the same first letter.
vector<wstring> find_longest_sequence(const vector<wstring>& words)
{
   // The current sequence of words that have the same first letter.
   vector<wstring> candidate_list;
   // The longest sequence of words that have the same first letter.
   vector<wstring> longest_run;

   for_each(begin(words), end(words), [&](const wstring& word) {
      // Initialize the candidate list if it is empty.
      if (candidate_list.size() == 0)
      {
         candidate_list.push_back(word);
      }
      // Add the word to the candidate sequence if the first letter
      // of the word is the same as each word in the sequence.
      else if (word[0] == candidate_list[0][0])
      {
         candidate_list.push_back(word);
      }
      // The initial letter has changed; reset the candidate list.
      else 
      {
         // Update the longest sequence if needed.
         if (candidate_list.size() > longest_run.size())
            longest_run = candidate_list;

         candidate_list.clear();
         candidate_list.push_back(word);         
      }
   });

   return longest_run;
}

// Finds all pairs of palindromes that appear in the provided collection
// of words.
vector<pair<wstring, wstring>> find_palindromes(const vector<wstring>& words, 
   size_t min_length)
{
   typedef pair<wstring, wstring> pair;
   vector<pair> result;

   // Copy the words to a new vector object and sort that vector.
   vector<wstring> wordvector;
   copy(begin(words), end(words), back_inserter(wordvector));
   sort(begin(wordvector), end(wordvector));

   // Add each word in the original collection to the result whose palindrome 
   // also exists in the collection. 
   for_each(begin(words), end(words), [&](const wstring& word) {
      if (word.length() >= min_length)
      {
         wstring rev = word;
         reverse(begin(rev), end(rev));

         if (rev != word && binary_search(begin(wordvector), end(wordvector), rev))
         {
            auto candidate1 = make_pair(word, rev);
            auto candidate2 = make_pair(rev, word);
            if (find(begin(result), end(result), candidate1) == end(result) &&
                find(begin(result), end(result), candidate2) == end(result))
               result.push_back(candidate1);
         }
      }
   });
   
   return result;
}

In questo esempio viene generato l'output di esempio seguente.

Downloading 'The Iliad'...

Running serial version... took 953 ms.
Running parallel version... took 656 ms.

The most common words that have five or more letters are:
    their (953)
    shall (444)
    which (431)
    great (398)
    Hector (349)
    Achilles (309)
    through (301)
    these (268)
    chief (259)
The longest sequence of words that have the same first letter is:
    through the tempest to the tented
The following palindromes appear in the text:
    spots stops
    speed deeps
    keels sleek

In questo esempio viene usato l'algoritmo parallel_invoke per chiamare più funzioni che agiscono sulla stessa origine dati. È possibile usare l'algoritmo parallel_invoke per chiamare qualsiasi set di funzioni in parallelo, non solo quelle che agiscono sugli stessi dati.

Poiché l'algoritmo parallel_invoke chiama ogni funzione di lavoro in parallelo, le prestazioni vengono vincolate dalla funzione che richiede il tempo più lungo per il completamento, ovvero se il runtime elabora ogni funzione in un processore separato. Se questo esempio esegue più attività in parallelo rispetto al numero di processori disponibili, più attività possono essere eseguite in ogni processore. In questo caso, le prestazioni sono vincolate dal gruppo di attività che richiede più tempo per il completamento.

Poiché in questo esempio vengono eseguite tre attività in parallelo, non è consigliabile che le prestazioni vengano ridimensionate nei computer con più di tre processori. Per migliorare le prestazioni, è possibile suddividere le attività con esecuzione più lunga in attività più piccole ed eseguire tali attività in parallelo.

È possibile usare l'algoritmo parallel_invoke anziché le classi concurrency::task_group e concurrency::structured_task_group se non è necessario il supporto per l'annullamento. Per un esempio che confronta l'utilizzo dell'algoritmo parallel_invoke rispetto ai gruppi di attività, vedere Procedura: Usare parallel_invoke per scrivere una routine di ordinamento parallelo.

Compilazione del codice

Per compilare il codice, copiarlo e incollarlo in un progetto di Visual Studio oppure incollarlo in un file denominato parallel-word-mining.cpp e quindi eseguire il comando seguente in una finestra del prompt dei comandi di Visual Studio.

cl.exe /EHsc /MD /DUNICODE /D_AFXDLL parallel-word-mining.cpp

Vedi anche

Algoritmi paralleli
Funzione parallel_invoke