Esecuzione di query su un modello Logistic Regression (Analysis Services - Data mining)

Quando si crea una query su un modello di data mining, è possibile creare una query sul contenuto, che fornisce dettagli sui criteri individuati durante l'analisi, oppure una query di stima, che utilizza i criteri presenti nel modello di data mining per eseguire stime utilizzando nuovi dati.

In questa sezione viene illustrato come creare entrambi i tipi di query per i modelli basati sull'algoritmo Microsoft Logistic Regression.

Query contenuto

Recupero di parametri di modello tramite un set di righe dello schema di data mining

Ricerca di dettagli aggiuntivi sul modello tramite DMX

Query di stima

Esecuzione di stime per un valore continuo

Esecuzione di stime per un valore discreto

Acquisizione di informazioni sul modello di regressione logistica

I modelli di regressione logistica vengono creati utilizzando l'algoritmo Microsoft Neural Network con un particolare set di parametri. In un modello di regressione logistica sono pertanto contenute alcune delle informazioni presenti in un modello di rete neurale, ma in forma meno complessa. Per informazioni sulla struttura del contenuto del modello e sui diversi dati archiviati nei vari tipi di nodi, vedere Contenuto dei modelli di data mining per i modelli di regressione logistica (Analysis Services - Data mining).

Per proseguire con altri scenari di query, è possibile creare un modello di regressione logistica come descritto nella sezione seguente dell'esercitazione sul data mining: Lezione 5: Creazione dei modelli di rete neurale e di regressione logistica (Esercitazione intermedia sul data mining).

È inoltre possibile utilizzare la struttura di data mining, Targeted Mailing, dell'Esercitazione di base sul data mining.

ALTER MINING STRUCTURE [Targeted Mailing]
ADD MINING MODEL [TM_Logistic Regression]
([Customer Key],
[Age],
[Bike Buyer] PREDICT,
[Yearly Income] PREDICT,
[Commute Distance],
[English Education],
Gender,
[House Owner Flag],
[Marital Status],
[Number Cars Owned],
[Number Children At Home],
[Region],
[Total Children]
)
USING Microsoft_Logistic_Regression

Esempio di query 1: Recupero di parametri di modello tramite un set di righe dello schema di data mining

L'esecuzione di una query sul set di righe dello schema di data mining consente di trovare i metadati relativi al modello, ad esempio la data e l'ora di creazione, la data e l'ora dell'ultima elaborazione, il nome della struttura di data mining su cui si basa il modello e il nome della colonna utilizzata come attributo stimabile. Nell'esempio seguente vengono restituiti i parametri utilizzati quando è stato creato il modello, il nome e il tipo di modello e la relativa data di creazione.

SELECT MODEL_NAME, SERVICE_NAME, DATE_CREATED, MINING_PARAMETERS 
FROM $system.DMSCHEMA_MINING_MODELS
WHERE MODEL_NAME = 'Call Center_LR'

Risultati dell'esempio:

MODEL_NAME

SERVICE_NAME

DATE_CREATED

MINING_PARAMETERS

Call Center_LR

Microsoft_Logistic_Regression

04/07/2009 20:38:33

HOLDOUT_PERCENTAGE=30, HOLDOUT_SEED=1, MAXIMUM_INPUT_ATTRIBUTES=255, MAXIMUM_OUTPUT_ATTRIBUTES=255, MAXIMUM_STATES=100, SAMPLE_SIZE=10000

Torna all'inizio

Esempio di query 2: Ricerca di dettagli aggiuntivi sul modello tramite DMX

Nella query seguente vengono restituite informazioni di base sul modello di regressione logistica. Si tenga presente che un modello di regressione logistica è per molti aspetti simile a un modello di rete neurale, inclusa la presenza di un nodo delle statistiche marginali (NODE_TYPE = 24) che descrive i valori utilizzati come input. In questa query di esempio viene utilizzato il modello di mailing diretto e i valori di tutti gli input vengono recuperati dalla tabella nidificata, NODE_DISTRIBUTION.

SELECT FLATTENED NODE_DISTRIBUTION AS t
FROM [TM_Logistic Regression].CONTENT 

Risultati parziali:

t.ATTRIBUTE_NAME

t.ATTRIBUTE_VALUE

t.SUPPORT

t.PROBABILITY

t.VARIANCE

t.VALUETYPE

Age

Missing

0

0

0

1

Age

45.43491192

17484

1

126.9544114

3

Bike Buyer

Missing

0

0

0

1

Bike Buyer

0

8869

0.507263784

0

4

Bike Buyer

1

8615

0.492736216

0

4

Commute Distance

Missing

0

0

0

1

Commute Distance

5-10 Miles

3033

0.173472889

0

4

La query effettiva restituisce molte più righe, tuttavia questo esempio illustra il tipo di informazioni sugli input che vengono fornite. Per gli input discreti, nella tabella viene elencato ogni valore possibile. Poiché per gli input con valore continuo, ad esempio Age, è impossibile fornire un elenco completo, l'input viene discretizzato come media. Per ulteriori informazioni sull'utilizzo dei dati del nodo delle statistiche marginali, vedere Contenuto dei modelli di data mining per i modelli di regressione logistica (Analysis Services - Data mining).

Nota

I risultati sono stati resi bidimensionali per consentirne una visualizzazione più immediata, ma è possibile restituire la tabella nidificata in una sola colonna, se il provider supporta set di righe gerarchici. Per ulteriori informazioni, vedere Hierarchical Rowsets in OLE DB Programmer's Guide (informazioni in lingua inglese).

Torna all'inizio

Query di stima per un modello di regressione logistica

È possibile utilizzare la funzione Predict (DMX) con ogni tipo di modello di data mining per fornire nuovi dati al modello ed eseguire stime in base ai nuovi valori. Sono inoltre disponibili funzioni che consentono di restituire informazioni aggiuntive sulla stima, ad esempio la probabilità che una stima sia corretta. In questa sezione vengono forniti alcuni esempi di query di stima su un modello di regressione logistica.

Query di esempio 3: Esecuzione di stime per un valore continuo

Poiché la regressione logistica supporta anche l'utilizzo di attributi continui sia per l'input sia per la stima, è facile creare modelli che correlano i vari fattori nei dati. È possibile utilizzare query di stima per esplorare la relazione fra questi fattori.

Nell'esempio di query riportato di seguito, basato sul modello di call center tratto dall'esercitazione intermedia, viene creata una query singleton che stima il livello di servizio per il turno del venerdì mattina. La funzione PredictHistogram (DMX) restituisce una tabella nidificata che contiene statistiche importanti per comprendere la validità del valore stimato.

SELECT
  Predict([Call Center_LR].[Service Grade]) as Predicted ServiceGrade,
  PredictHistogram([Call Center_LR].[Service Grade]) as [Results],
FROM
  [Call Center_LR]
NATURAL PREDICTION JOIN
(SELECT 'Friday' AS [Day Of Week],
  'AM' AS [Shift]) AS t

Risultati dell'esempio:

Livello di servizio stimato

Risultati

0.102601830123659

Livello di servizio$SUPPORT$PROBABILITY$ADJUSTEDPROBABILITY$VARIANCE$STDEV
0.10260183012365983.02325581395350.98837209302325600.001205526606000870.034720694203902
0.9767441860465120.01162790697674420.011627906976744200

Per ulteriori informazioni sui valori di probabilità, supporto e deviazione standard nella tabella NODE_DISTRIBUTION nidificata, vedere Contenuto dei modelli di data mining per i modelli di regressione logistica (Analysis Services - Data mining).

Torna all'inizio

Query di esempio 4: Esecuzione di stime per un valore discreto

La regressione logistica viene in genere utilizzata negli scenari nei quali si desidera analizzare i fattori che contribuiscono a un risultato binario. Anche se tramite il modello utilizzato nell'esercitazione viene stimato un valore continuo, ServiceGrade, in uno scenario reale è necessario configurare il modello per stimare se il livello di servizio ha soddisfatto un valore di destinazione discretizzato. In alternativa, è possibile restituire le stime utilizzando un valore continuo, ma in un secondo momento occorre raggruppare i risultati stimati in Buono, Discreto o Scarso.

Nell'esempio riportato di seguito viene illustrato come modificare la modalità di raggruppamento dell'attributo stimabile. A tale scopo, creare una copia della struttura di data mining, quindi modificare il metodo di discretizzazione della colonna di destinazione in modo che i valori siano raggruppati anziché continui.

Nella procedura riportata di seguito viene illustrato come modificare il raggruppamento di valori Service Grade nei dati del call center.

Per creare una versione discretizzata della struttura di data mining del call center e dei modelli

  1. In Business Intelligence Development Studio, in Esplora soluzioni espandere Strutture di data mining.

  2. Fare clic con il pulsante destro del mouse su Call Center.dmm e selezionare Copia.

  3. Fare clic con il pulsante destro del mouse su Strutture di data mining e selezionare Incolla. Viene aggiunta una nuova struttura di data mining, denominata Call Center 1.

  4. Fare clic con il pulsante destro del mouse sulla nuova struttura di data mining e selezionare Rinomina. Digitare il nuovo nome, Call center discretizzato.

  5. Fare doppio clic sulla nuova struttura di data mining per aprirla nella finestra di progettazione. Si noti che sono stati copiati anche tutti i modelli di data mining, tutti con estensione 1. Per il momento, lasciare i nomi invariati.

  6. Nella scheda Struttura di data mining fare clic con il pulsante destro del mouse sulla colonna per Service Grade e selezionare Proprietà.

  7. Modificare il valore della proprietà Content da Continuo a Discretizzato. Modificare il valore della proprietà DiscretizationMethod in Cluster. Per il conteggio dei bucket di discretizzazione digitare 3.

    Nota

    Questi parametri vengono utilizzati solo per illustrare il processo, non producono necessariamente un modello valido.

  8. Scegliere Elabora struttura di data mining e tutti i modelli dal menu Modello di data mining.

Nella query di esempio seguente, basata su questo modello discretizzato, viene stimato il livello di servizio per il giorno della settimana specificato, insieme alle probabilità per ogni risultato stimato.

SELECT
  (PredictHistogram([Call Center_LR 1].[Service Grade])) as [Predictions]
FROM
  [Call Center_LR 1]
NATURAL PREDICTION JOIN
(SELECT 'Saturday' AS [Day Of Week]) AS t  

Risultati previsti:

Stime

Livello di servizio$SUPPORT$PROBABILITY$ADJUSTEDPROBABILITY$VARIANCE$STDEV
0.1087271838312535.72465047706410.4252934580602870.017016836003029300
0.0585576923062531.70988808007030.3774986676198850.02088202006045400
0.17016949152515.61091598832020.1858442379561920.066138657138604900
0.9545454545454550.01136363636363640.011363636363636400

Si noti che i risultati stimati sono stati raggruppati in tre categorie come specificato; tuttavia i raggruppamenti sono basati sul clustering di valori effettivi nei dati, non valori arbitrari che è possibile impostare come obiettivi aziendali.

Torna all'inizio

Elenco delle funzioni di stima

Tutti gli algoritmi Microsoft supportano un set comune di funzioni. L'algoritmo Microsoft Logistic Regression tuttavia supporta le funzioni aggiuntive elencate nella tabella seguente.

Per un elenco delle funzioni comuni a tutti gli algoritmi Microsoft, vedere Mapping di funzioni a tipi di query (DMX). Per informazioni sulla sintassi di funzioni specifiche, vedere Guida di riferimento alle funzioni DMX (Data Mining Extensions).

Nota

Per i modelli di reti neurali e di regressione logistica la funzione PredictSupport (DMX) restituisce un solo valore che rappresenta la dimensione del set di training per l'intero modello.