Blocco e sblocco degli intervalli di byte nei file
Anche se il sistema consente a più applicazioni di aprire un file e scrivervi, le applicazioni non devono scrivere tra loro. Un'applicazione può impedire questo problema bloccando temporaneamente un intervallo di byte in un file.
Le funzioni LockFile e LockFileEx bloccano un intervallo specificato di byte in un file. L'intervallo può estendersi oltre la fine corrente del file. La parte di blocco di un file fornisce ai thread dei processi di blocco l'accesso esclusivo all'intervallo di byte specificato usando l'handle di file specificato. I tentativi di accesso a un intervallo di byte bloccato da un altro processo hanno sempre esito negativo. Se il processo di blocco tenta di accedere a un intervallo di byte bloccato tramite un secondo handle di file, il tentativo non riesce.
Nota
I blocchi dell'intervallo di byte vengono ignorati quando si usano file mappati alla memoria.
La funzione LockFileEx consente a un'applicazione di specificare uno dei due tipi di blocchi. Un blocco esclusivo nega a tutti gli altri processi l'accesso in lettura e scrittura all'intervallo di byte specificato di un file. Un blocco condiviso nega a tutti i processi l'accesso in scrittura all'intervallo di byte specificato di un file, incluso il processo che blocca prima l'intervallo di byte. Può essere usato per creare un intervallo di byte di sola lettura in un file.
Un'applicazione sblocca l'intervallo di byte usando la funzione UnlockFile o UnlockFileEx e deve sbloccare tutte le aree bloccate prima di chiudere un file.
Per un esempio di uso di LockFile, vedere Aggiunta di un file a un altro file.
Gli esempi seguenti illustrano come usare LockFileEx. Il primo esempio è una semplice dimostrazione per creare un file, scrivere alcuni dati e quindi bloccare una sezione al centro.
Nota Questo esempio non modifica i dati dopo il blocco del file.
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (C) Microsoft. All rights reserved
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#define NUMWRITES 10
#define TESTSTRLEN 11
const char TestData[NUMWRITES][TESTSTRLEN] =
{
"TestData0\n",
"TestData1\n",
"TestData2\n",
"TestData3\n",
"TestData4\n",
"TestData5\n",
"TestData6\n",
"TestData7\n",
"TestData8\n",
"TestData9\n"
};
int main(int argc, char *argv[])
{
BOOL fSuccess = FALSE;
// Create the file, open for both read and write.
HANDLE hFile = CreateFile(TEXT("datafile.txt"),
GENERIC_READ | GENERIC_WRITE,
0, // open with exclusive access
NULL, // no security attributes
CREATE_NEW, // creating a new temp file
0, // not overlapped index/O
NULL);
if (hFile == INVALID_HANDLE_VALUE)
{
// Handle the error.
printf("CreateFile failed (%d)\n", GetLastError());
return (1);
}
// Write some data to the file.
DWORD dwNumBytesWritten = 0;
for (int i=0; i<NUMWRITES; i++)
{
fSuccess = WriteFile(hFile,
TestData[i],
TESTSTRLEN,
&dwNumBytesWritten,
NULL); // sync operation.
if (!fSuccess)
{
// Handle the error.
printf("WriteFile failed (%d)\n", GetLastError());
return (2);
}
}
FlushFileBuffers(hFile);
// Lock the 4th write-section.
// First, set up the Overlapped structure with the file offset
// required by LockFileEx, three lines in to the file.
OVERLAPPED sOverlapped;
sOverlapped.Offset = TESTSTRLEN * 3;
sOverlapped.OffsetHigh = 0;
// Actually lock the file. Specify exclusive access, and fail
// immediately if the lock cannot be obtained.
fSuccess = LockFileEx(hFile, // exclusive access,
LOCKFILE_EXCLUSIVE_LOCK |
LOCKFILE_FAIL_IMMEDIATELY,
0, // reserved, must be zero
TESTSTRLEN, // number of bytes to lock
0,
&sOverlapped); // contains the file offset
if (!fSuccess)
{
// Handle the error.
printf ("LockFileEx failed (%d)\n", GetLastError());
return (3);
}
else printf("LockFileEx succeeded\n");
/////////////////////////////////////////////////////////////////
// Add code that does something interesting to locked section, /
// which should be line 4 /
/////////////////////////////////////////////////////////////////
// Unlock the file.
fSuccess = UnlockFileEx(hFile,
0, // reserved, must be zero
TESTSTRLEN, // num. of bytes to unlock
0,
&sOverlapped); // contains the file offset
if (!fSuccess)
{
// Handle the error.
printf ("UnlockFileEx failed (%d)\n", GetLastError());
return (4);
}
else printf("UnlockFileEx succeeded\n");
// Clean up handles, memory, and the created file.
fSuccess = CloseHandle(hFile);
if (!fSuccess)
{
// Handle the error.
printf ("CloseHandle failed (%d)\n", GetLastError());
return (5);
}
fSuccess = DeleteFile(TEXT("datafile.txt"));
if (!fSuccess)
{
// Handle the error.
printf ("DeleteFile failed (%d)\n", GetLastError());
return (6);
}
return (0);
}
L'esempio seguente è una dimostrazione avanzata del blocco di intervalli di byte, usando più thread e un database semplice che esegue operazioni casuali su un singolo file di dati. Per altre informazioni, vedere i commenti di codice incorporati e la sezione che segue il codice di esempio.
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (C) Microsoft. All rights reserved
#define UNICODE
#define _CRT_RAND_S
#include <stdlib.h>
#include <windows.h>
#include <stdio.h>
#include <malloc.h>
#include <conio.h>
#include <process.h>
#include <winioctl.h>
#define RECORD_SIZE 0x300
#define NUM_RECORDS 0x1000
#define NUM_THREADS 8
#define NUM_FILEOPS 500
#define BITMAP_SIZE ((NUM_RECORDS) / 8)
#define DATA_SIZE ((RECORD_SIZE) - sizeof(RECORD_HEADER))
#define MSG_PRINTF(S,...) wprintf(L"[THREAD_ID %d] " S, \
GetCurrentThreadId(), \
__VA_ARGS__)
#if defined BRLS_DEBUG
#define DBG_PRINTF(S,...) wprintf(L"[THREAD_ID %d] " S, \
GetCurrentThreadId(), \
__VA_ARGS__)
#else
#define DBG_PRINTF(...)
#define PrintBitmap(...)
#endif
#define MASTER_RECORD_TYPE_CODE 'rtsM'
#define DATA_RECORD_TYPE_CODE 'ataD'
//
// Record type definitions.
//
typedef struct _RECORD_HEADER {
ULONG TypeCode; // Either MASTER_RECORD_TYPE_CODE or DATA_RECORD_TYPE_CODE.
ULONG SeqNumber; // Starts at 1 and is incremented every time contents are modified.
} RECORD_HEADER;
typedef struct _MASTER_RECORD {
RECORD_HEADER Header;
BYTE Bitmap[BITMAP_SIZE]; // A bitmap indicating which records are allocated.
} MASTER_RECORD;
typedef struct _DATA_RECORD {
RECORD_HEADER Header;
BYTE Data[DATA_SIZE]; // Record raw data.
} DATA_RECORD;
//
// Types of I/O for IoRecord.
//
typedef enum {
IoRead,
IoWrite,
IoLock,
IoUnlock
} IO_TYPE;
//
// Types of operations for OperateOnRecord.
//
typedef enum {
CreateRecord = 0,
DeleteRecord,
ModifyRecord,
MaxOprRecord
} OPERATION;
//
// Parameter block for I/Os passed to IoRecord.
//
typedef struct _IO_PARAM {
IO_TYPE Type;
union _IO_PARAM_PARAMS {
struct {
PVOID Data;
ULONG RecSize;
} IoInfo;
struct {
BOOL Exclusive;
} LockInfo ;
} Params;
} IO_PARAM, *PIO_PARAM;
void ErrorExitThread()
//
// This function is called immediately after an unrecoverable error is logged.
//
{
MSG_PRINTF(L"An error has been logged, calling ExitThread.\n");
ExitThread(1);
}
BOOL IoRecord(HANDLE hFile, ULONG RecNumber, PIO_PARAM pIoParam)
//
// This function performs I/O (read, write, lock or unlock) in a record, according
// to the parameters passed in the IO_PARAM block.
//
// Arguments:
// hFile - Handle to the file containing the records.
// RecNumber - Number of the record to be operated on.
// pIoParam - Pointer to IO_PARAM structure.
//
// Return value:
// TRUE if the I/O succeeded, FALSE if not.
//
{
OVERLAPPED Overlapped;
BOOL Result;
ULARGE_INTEGER RecOffset;
DWORD NumBytes;
// Initialize Overlapped.
SecureZeroMemory(&Overlapped, sizeof(OVERLAPPED));
Overlapped.hEvent = CreateEvent(NULL,
FALSE,
FALSE,
NULL);
if (NULL == Overlapped.hEvent)
{
MSG_PRINTF(L"CreateEvent for Overlapped.hEvent failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Calculate record position.
RecOffset.QuadPart = RecNumber * RECORD_SIZE;
Overlapped.Offset = RecOffset.LowPart;
Overlapped.OffsetHigh = RecOffset.HighPart;
// Issue the operation.
switch (pIoParam->Type)
{
case IoLock:
Result = LockFileEx(hFile,
pIoParam->Params.LockInfo.Exclusive ? LOCKFILE_EXCLUSIVE_LOCK : 0,
0,
RECORD_SIZE,
0,
&Overlapped);
break;
case IoUnlock:
Result = UnlockFileEx(hFile,
0,
RECORD_SIZE,
0,
&Overlapped);
break;
case IoRead:
Result = ReadFile(hFile,
pIoParam->Params.IoInfo.Data,
pIoParam->Params.IoInfo.RecSize,
NULL,
&Overlapped);
break;
case IoWrite:
Result = WriteFile(hFile,
pIoParam->Params.IoInfo.Data,
pIoParam->Params.IoInfo.RecSize,
NULL,
&Overlapped);
break;
default:
Result = FALSE;
break;
}
if (!Result)
{
if (GetLastError() == ERROR_IO_PENDING)
{
// Wait until the operation finishes.
if (GetOverlappedResult(hFile,
&Overlapped,
&NumBytes,
TRUE) == FALSE)
{
MSG_PRINTF(L"GetOverlappedResult for Overlapped.hEvent failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
Result = TRUE;
} else {
MSG_PRINTF(L"IoRecord failed with error 0x%08x. Failure passed to caller.\n",
GetLastError());
}
}
CloseHandle(Overlapped.hEvent);
return Result;
}
//
// The following functions are wrappers around IoRecord, they just set the correct
// parameters in the IO_PARAM block to correspond to the requested operation and
// pass that to IoRecord.
//
BOOL ReadRecord(HANDLE hFile, ULONG RecNumber, PVOID Record, ULONG RecSize)
{
IO_PARAM IoParam;
IoParam.Type = IoRead;
IoParam.Params.IoInfo.Data = Record;
IoParam.Params.IoInfo.RecSize = RecSize;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL WriteRecord(HANDLE hFile, ULONG RecNumber, PVOID Record, ULONG RecSize)
{
IO_PARAM IoParam;
IoParam.Type = IoWrite;
IoParam.Params.IoInfo.Data = Record;
IoParam.Params.IoInfo.RecSize = RecSize;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL LockRecord(HANDLE hFile, ULONG RecNumber, BOOL Exclusive)
{
IO_PARAM IoParam;
IoParam.Type = IoLock;
IoParam.Params.LockInfo.Exclusive = Exclusive;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL UnlockRecord(HANDLE hFile, ULONG RecNumber)
{
IO_PARAM IoParam;
IoParam.Type = IoUnlock;
return IoRecord(hFile, RecNumber, &IoParam);
}
ULONG ReserveFirstFreeRecord(BYTE* Bitmap)
//
// This function iterates through the bitmap and reserves the first free record
// it can find in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
//
// Return value:
// Either zero, if there are no free records, or the position of the record
// that was just reserved.
//
{
int i;
BYTE Bit = 1;
for (i = 0; i < NUM_RECORDS; i++)
{
if (Bitmap[i / 8] & Bit)
{
Bit <<= 1;
if (Bit == 0) { Bit = 1; }
} else {
Bitmap[i / 8] |= Bit;
return i;
}
}
return 0;
}
BOOL TestBit(BYTE* Bitmap, ULONG Bit)
//
// This function tests if a given bit is set in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
// Bit - Position of the bit in the bitmap.
//
// Return value:
// TRUE if the bit is set, FALSE otherwise.
//
{
ULONG Byte = Bit / 8;
Bit = Bit % 8;
return (BOOL)(Bitmap[Byte] & (1 << Bit));
}
void ClearBit(BYTE* Bitmap, ULONG Bit)
//
// This function clears a given bit in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
// Bit - Position of the bit in the bitmap.
//
{
ULONG Byte = Bit / 8;
Bit = Bit % 8;
Bitmap[Byte] &= ~(1 << Bit);
}
#ifdef BRLS_DEBUG
void PrintBitmap(BYTE* Bitmap)
//
// This function prints the whole bitmap, for debugging purposes.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
//
{
int i;
for (i = 0; i < BITMAP_SIZE; i++)
{
wprintf(L"%1x", Bitmap[i]);
}
wprintf(L"\n");
}
#endif
void InitRecord(RECORD_HEADER* Record, BOOL Master, ULONG SeqNumber)
//
// This function initializes a in-memory record structure with the correct
// type code and sequence number. In case of the Master Record, the bitmap
// is initialized too.
//
// Arguments:
// Record - Pointer to the record structure.
// Master - TRUE if this is a Master Record, FALSE otherwise.
// SeqNumber - Initial sequence number.
//
{
ULONG RecSize = Master ? sizeof(MASTER_RECORD) : sizeof(DATA_RECORD);
ULONG TypeCode = Master ? MASTER_RECORD_TYPE_CODE : DATA_RECORD_TYPE_CODE;
SecureZeroMemory(Record, RecSize);
Record->TypeCode = TypeCode;
Record->SeqNumber = Master ? 0 : SeqNumber;
if (Master)
{
((MASTER_RECORD*)Record)->Bitmap[0] = 1;
}
}
DATA_RECORD* PrepareRecord(ULONG SeqNumber)
//
// This function allocates a new in-memory record structure and initializes it
// as a brand new data record.
//
// Arguments:
// SeqNumber - Sequence number with which to initialize the record.
//
// Return value:
// Pointer to the record structure.
//
{
DATA_RECORD* Record = NULL;
Record = (DATA_RECORD*) malloc(sizeof(DATA_RECORD));
if (Record == NULL)
{
MSG_PRINTF(L"Critical error: malloc for CreateRecord failed.\n");
ErrorExitThread();
}
InitRecord((RECORD_HEADER*)Record, FALSE, SeqNumber);
return Record;
}
void WriteData(DATA_RECORD* Record)
//
// This function fills a in-memory data record structure with random data.
// Errors do not interrupt execution.
//
// Arguments:
// Record - Pointer to the record structure.
//
{
PUINT iData;
int i;
errno_t err;
iData = (PUINT)Record->Data;
for (i = 0; i < DATA_SIZE; i += sizeof(ULONG), iData++)
{
err = rand_s(iData);
if (err != 0)
{
MSG_PRINTF(L"rand_s for WriteData failed with error 0x%08x, continuing execution.\n",
err);
}
}
}
BOOL OperateOnRecord(HANDLE hFile, PULONG RecNumber, OPERATION Operation)
//
// This function executes a high-level operation in a record (create, modify or delete).
//
// Arguments:
// hFile - Handle to the file containing the record to be operated on.
// RecNumber - Pointer to a ULONG that either will receive the number of the
// record created by this operation or just contains the number
// of the record that will be modified or deleted.
// Operation - Operation to be performed (CreateRecord, ModifyRecord or
// DeleteRecord).
//
// Return value:
// TRUE if the operation succeeded, FALSE otherwise.
//
{
BOOL Result;
BOOL Exists;
BOOL ExclusiveLock;
MASTER_RECORD MasterRecord;
DATA_RECORD* Record;
// Fail operations on Master Record.
if ((Operation != CreateRecord) && (*RecNumber == 0))
{
MSG_PRINTF(L"Cannot operate on Master Record.\n");
return FALSE;
}
// Lock Master Record. If we're just modifying a record, we can get a
// shared lock.
ExclusiveLock = (Operation != ModifyRecord);
Result = LockRecord(hFile, 0, ExclusiveLock);
if (!Result)
{
MSG_PRINTF(L"LockRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Read in Master Record.
Result = ReadRecord(hFile, 0, (PVOID)&MasterRecord, sizeof(MASTER_RECORD));
if (!Result)
{
MSG_PRINTF(L"ReadRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (MasterRecord.Header.TypeCode != MASTER_RECORD_TYPE_CODE)
{
MSG_PRINTF(L"Master Record corruption error: wrong typecode!\n");
ErrorExitThread();
}
DBG_PRINTF(L"MasterRecord bitmap (before): ");
PrintBitmap(MasterRecord.Bitmap);
if (Operation != CreateRecord)
{
// Test the bit in the bitmap corresponding to this record.
Exists = TestBit(MasterRecord.Bitmap, *RecNumber);
// Clear the bit if we are deleting the record.
if ((Operation == DeleteRecord) && Exists)
{
ClearBit(MasterRecord.Bitmap, *RecNumber);
}
} else {
// Reserve the first free record.
*RecNumber = ReserveFirstFreeRecord(MasterRecord.Bitmap);
if (*RecNumber != 0)
{
Exists = TRUE;
} else {
Exists = FALSE;
MSG_PRINTF(L"File is full!\n");
}
}
DBG_PRINTF(L"MasterRecord bitmap (after): ");
PrintBitmap(MasterRecord.Bitmap);
if ((Operation != ModifyRecord) && Exists)
{
// Update the Master Record's sequence number.
MasterRecord.Header.SeqNumber++;
// Write Master Record down.
Result = WriteRecord(hFile, 0, (PVOID)&MasterRecord, sizeof(MASTER_RECORD));
if (!Result)
{
MSG_PRINTF(L"WriteRecord (MasterRecord) for CreateRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
}
// Unlock Master Record.
Result = UnlockRecord(hFile, 0);
if (!Result)
{
MSG_PRINTF(L"UnlockRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (!Exists)
{
if (*RecNumber != 0)
{
MSG_PRINTF(L"Record %d not present!\n", *RecNumber);
}
return FALSE;
}
// For record deletion, processing is done and skip to write.
// Otherwise, there is more to do.
if (Operation != DeleteRecord)
{
// Prepare a new record in memory.
Record = PrepareRecord(1);
// Lock the record exclusively.
Result = LockRecord(hFile, *RecNumber, TRUE);
if (!Result)
{
MSG_PRINTF(L"LockRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (Operation == ModifyRecord)
{
// Read the record in from the file if we're modifying it.
Result = ReadRecord(hFile, *RecNumber, Record, RECORD_SIZE);
if (!Result)
{
MSG_PRINTF(L"ReadRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Update record sequence number.
Record->Header.SeqNumber++;
}
// Write to the in-memory record.
WriteData(Record);
// Write the record to the file.
Result = WriteRecord(hFile, *RecNumber, Record, RECORD_SIZE);
if (!Result)
{
MSG_PRINTF(L"WriteRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Unlock the record.
Result = UnlockRecord(hFile, *RecNumber);
if (!Result)
{
MSG_PRINTF(L"UnlockRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Free the record structure.
free(Record);
}
return TRUE;
}
ULONG RandomOption(ULONG NumOpts)
//
// This function returns a random number between 0 and (NumOpts - 1).
// It basically is a random option select.
//
// Arguments:
// NumOpts - Number of options to choose from.
//
// Return value:
// A random option (random ULONG x | 0 <= x < NumOpts).
//
{
UINT Random;
errno_t err;
err = rand_s(&Random);
if (err != 0)
{
MSG_PRINTF(L"rand_s for RandomOption failed with error 0x%08x\n",
err);
}
return Random % NumOpts;
}
DWORD WINAPI WorkerThread(PVOID data)
//
// This is the tight loop executed by each of the threads operating in the file.
// Each thread has its own handle to the same file. After obtaining that handle,
// they go into a tight loop in which a record number and a record operation are
// chosen at random and that operation is then performed in that record.
//
// Arguments:
// Data - PVOID to a string containing the file name (so it can be opened).
//
// Return value:
// It should not return.
//
{
HANDLE hFile;
LPCWSTR FileName = (LPCWSTR)data;
ULONG RecNumber;
OPERATION Operation;
BOOL Result;
UINT i;
hFile = CreateFile(FileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL);
if (hFile == INVALID_HANDLE_VALUE)
{
MSG_PRINTF(L"CreateFile failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Main loop for doing the random operations.
for (i = 0; i < NUM_FILEOPS; i++)
{
RecNumber = RandomOption(NUM_RECORDS);
Operation = (OPERATION)RandomOption(MaxOprRecord);
// Output message as to what action is being attempted.
switch (Operation)
{
case CreateRecord:
MSG_PRINTF(L"attempting record creation.\n");
break;
case ModifyRecord:
MSG_PRINTF(L"attempting modification of record %d.\n", RecNumber);
break;
case DeleteRecord:
MSG_PRINTF(L"attempting deletion of record %d.\n", RecNumber);
break;
}
// Perform the actual operation and handle the result,
// then loop again until done.
Result = OperateOnRecord(hFile, &RecNumber, Operation);
if (Result)
{
switch (Operation)
{
case CreateRecord:
MSG_PRINTF(L"created record %d.\n", RecNumber);
break;
case ModifyRecord:
MSG_PRINTF(L"modified record %d.\n", RecNumber);
break;
case DeleteRecord:
MSG_PRINTF(L"deleted record %d.\n", RecNumber);
break;
}
}
}
CloseHandle(hFile);
MSG_PRINTF(L"%d file operations complete. Exiting thread.\n", i);
return 0;
}
BOOL InitNewFile(LPCWSTR FileName)
//
// This function initializes a file with records. If the file already exists, it
// just returns, assuming it has a valid Master Record on it. If it does not
// exist, a brand new file is created and initialized with a clean Master Record.
//
// Arguments:
// FileName - Name of the file to be initialized.
//
// Return value:
// TRUE if the initialization succeeded, FALSE otherwise.
//
{
HANDLE hFile;
MASTER_RECORD MasterRecord;
DWORD BytesWritten;
DWORD Result;
//
// Create the file or open existing.
//
hFile = CreateFile(FileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
MSG_PRINTF(L"CreateFile failed with error 0x%08x.\n",
GetLastError());
return FALSE;
}
else if (ERROR_ALREADY_EXISTS == GetLastError())
{
// This is ok, simply assume it's a valid file.
// Note that this does not actually test that the file
// is valid for this application. That error is caught later.
CloseHandle(hFile);
return TRUE;
} // The implied "else" is that the handle is a good one.
InitRecord((RECORD_HEADER*)&MasterRecord, TRUE, 0);
Result = WriteFile(hFile,
&MasterRecord,
sizeof(MASTER_RECORD),
&BytesWritten,
NULL);
if (!Result)
{
MSG_PRINTF(L"WriteFile failed with error 0x%08x.\n",
GetLastError());
}
CloseHandle(hFile);
return Result;
}
int __cdecl wmain(int argc, LPCWSTR argv[])
//
// Main function. Reads file name from command line argument, initializes the file
// and starts the worker threads, waiting for them to return.
//
{
HANDLE gThread[NUM_THREADS];
DWORD IdThread;
DWORD ResultCode;
LPCWSTR FileName = NULL;
if (argc != 2) {
wprintf(L"Invalid number of arguments!\n");
wprintf(L"Usage: %ws file_name\n", argv[0]);
return -1;
}
FileName = argv[1];
if (!InitNewFile(FileName))
{
wprintf(L"Unable to initialize the data file %ws.\n", FileName);
}
wprintf(L"Main thread creating %d worker threads for processing.\n",
NUM_THREADS);
for (int i = 0; i < NUM_THREADS; i++)
{
gThread[i] = CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE)WorkerThread,
(PVOID)FileName,
0,
&IdThread);
}
wprintf(L"Main thread waiting for worker threads to exit...\n");
ResultCode = WaitForMultipleObjects(
NUM_THREADS,
gThread,
TRUE,
INFINITE);
wprintf(L"WaitForMultipleObjects returned 0x%08x, execution complete.\n",
ResultCode);
// Do some clean-up.
for (int i = 0; i < NUM_THREADS; i++)
{
CloseHandle(gThread[i]);
}
return 0;
}
Questo esempio è un'applicazione console di Windows che esegue più accessi simultanei a un file, tutti blocchi coordinati dell'intervallo di byte usando un database semplice, composto da diversi record di dimensioni fisse. Si noti che la concorrenza vera dipende dal numero di core del processore presenti nel sistema host.
Tutti i record hanno i primi due campi in comune: un codice di tipo e un numero di sequenza. Il codice di tipo è uno dei due codici: il codice "Mstr" fa riferimento al tipo MASTER_RECORD e il codice "Data" fa riferimento a un tipo DATA_RECORD . Può essere presente una sola MASTER_RECORD e zero o più DATA_RECORDs. Per questo esempio, i dati contenuti nei record di dati vengono generati in modo casuale. Il secondo campo, il numero di sequenza, viene incrementato ogni volta che viene modificato un record.
Quando inizia l'esecuzione, se il file di dati non esiste già, viene creato e inizializzato dalla funzione InitNewFile . La funzione InitNewFile scrive un record di tipo Master con una bitmap vuota all'inizio. Se il file esiste già, viene aperto; si presuppone che all'inizio sia presente un record Master valido.
Dopo aver creato o aperto correttamente il file, vengono avviati più thread di lavoro e tutti eseguono un ciclo in cui un'operazione e un record vengono scelti in modo casuale e quindi tale operazione viene tentata su tale record. Poiché queste operazioni sono casuali, non tutte hanno esito positivo, ma non sono necessariamente errori. Le informazioni sullo stato appropriate vengono registrate nella console.
Le operazioni possibili sono le seguenti: creazione di un nuovo record, modifica di un record esistente o eliminazione di un record esistente. L'operazione di creazione esamina la bitmap per trovare il primo record libero e alloca tale record come nuovo record. L'operazione di modifica legge la bitmap per verificare se il record esiste effettivamente e, in tal caso, modifica tale record. L'operazione di eliminazione cancella il bit nella bitmap corrispondente al record, liberando lo spazio occupato per l'allocazione futura. Inoltre, queste operazioni vengono suddivise in due parti: l'accesso a MasterRecord, dove vengono archiviati i metadati e l'accesso al record di dati stesso.
Poiché scrivono dati nei record di dati, le operazioni di creazione e modifica dei record dei record sono le uniche che richiedono l'accesso ai record dati. Per questo motivo, l'area coperta dal record viene bloccata esclusivamente prima dell'operazione eseguita. Le operazioni di creazione ed eliminazione modificano la bitmap, quindi devono bloccare esclusivamente il record master. Tuttavia, le operazioni di modifica dei record devono solo leggere la bitmap, non scriverla, per verificare se il file esiste. Per tale operazione, il record Master richiede solo un blocco di intervallo di byte condiviso.
I blocchi di intervallo di byte esclusivi impediscono l'accesso in lettura e scrittura da tutti gli altri handle al file e questo è il motivo per cui vengono usati durante la scrittura in un record. D'altra parte, un blocco di intervallo di byte condiviso impedisce l'accesso in scrittura da tutti gli handle, incluso l'handle proprietario del blocco, ma consente l'accesso in lettura da tutti.
Per illustrare l'uso dei blocchi dell'intervallo di byte con il file, tutte le operazioni di I/O in questo esempio, diverse dalla nuova inizializzazione dei file, vengono eseguite tramite un handle di file asincrono. Ciò può essere visualizzato nella funzione IoRecord nei case IoLock e IoUnlock all'interno dell'istruzione switch. Le funzioni LockFileEx e UnlockFileEx vengono usate con il modello di I/O sovrapposto passando una struttura OVERLAPPED a tali funzioni con l'offset per l'inizio dell'intervallo bloccato e un evento che verrà segnalato dopo che il blocco su tale intervallo viene concesso a meno che la funzione non restituisca immediatamente.
Dopo aver emesso la richiesta di I/O asincrona, l'operazione successiva nella funzione IoRecord prevede l'attesa dell'operazione in linea. Si tratta spesso di uno scenario non ottimale quando si desidera ottenere prestazioni massime e viene usato qui per motivi di semplicità. Nelle applicazioni di produzione, l'uso di porte di completamento di I/O o meccanismi simili è preferibile perché rilascia i thread per eseguire altre elaborazioni mentre l'I/O viene completato.
L'esempio termina dopo l'esecuzione di NUM_FILEOPS operazioni casuali. Ogni thread registra lo stato di terminazione come condizione di errore o terminazione normale. Si noti che non tutti i thread verranno terminati contemporaneamente, a seconda del numero di core del processore che il sistema host ha e della velocità del sottosistema di I/O.