rxDForestUtils: Utility Functions for rxDForest
Description
Utility Functions for rxDForest.
Usage
rxVarImpPlot(x, sort = TRUE, n.var = 30, main = deparse(substitute(x)), ... )
rxLeafSize(x, use.weight = TRUE)
rxTreeDepth(x)
rxTreeSize(x, terminal = TRUE)
rxVarUsed(x, by.tree = FALSE, count = TRUE)
rxGetTree(x, k = 1)
Arguments
x
an object of class rxDForest or rxDTree.
sort
logical value. If TRUE
, the variables will be sorted in decreasing importance.
n.var
an integer specifying the number of variables to show when sort=FALSE
.
main
a character string specifying the main title for the plot.
...
other arguments to be passed on to dotchart.
use.weight
logical value. If TRUE
, the leaf size is measured by the total weight of its observations instead of the total number of its observations.
terminal
logical value. If TRUE
, only the terminal nodes will be counted.
by.tree
logical value. If TRUE
, the list of variables used will be broken down by trees.
count
logical value. If TRUE
, the frequencies that variables appear in trees will be returned.
k
an integer specifying the index of the tree to be extracted.
Value
rxVarImpPlot
- plots a dotchart of the variable importance as measured by the decision forest.rxLeafSize
- returns the size of the terminal nodes in the decision forest.rxTreeDepth
- returns the depth of trees in the decision forest.rxTreeSize
- returns the size of trees in terms of the number of nodes in the decision forest.rxVarUsed
- finds out the variables actually used in the decision forest.rxGetTree
- extracts a single tree from the decision forest.
Author(s)
Microsoft Corporation Microsoft Technical Support
References
See Also
Examples
set.seed(1234)
# classification
iris.sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
iris.dforest <- rxDForest(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris[iris.sub, ], importance = TRUE)
rxVarImpPlot(iris.dforest)
rxTreeSize(iris.dforest)
rxVarUsed(iris.dforest)
rxGetTree(iris.dforest)