LearningModelSession.EvaluateAsync(LearningModelBinding, String) メソッド
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
バインドに既にバインドされている機能値を使用して、機械学習モデルを非同期的に評価 します。
public:
virtual IAsyncOperation<LearningModelEvaluationResult ^> ^ EvaluateAsync(LearningModelBinding ^ bindings, Platform::String ^ correlationId) = EvaluateAsync;
/// [Windows.Foundation.Metadata.RemoteAsync]
IAsyncOperation<LearningModelEvaluationResult> EvaluateAsync(LearningModelBinding const& bindings, winrt::hstring const& correlationId);
[Windows.Foundation.Metadata.RemoteAsync]
public IAsyncOperation<LearningModelEvaluationResult> EvaluateAsync(LearningModelBinding bindings, string correlationId);
function evaluateAsync(bindings, correlationId)
Public Function EvaluateAsync (bindings As LearningModelBinding, correlationId As String) As IAsyncOperation(Of LearningModelEvaluationResult)
パラメーター
- bindings
- LearningModelBinding
名前付き入力および出力機能にバインドされた値。
- correlationId
-
String
Platform::String
winrt::hstring
出力結果を接続するための省略可能なユーザー指定の文字列。
戻り値
評価からの LearningModelEvaluationResult。
- 属性
例
次の例では、モデルから最初の入力フィーチャと出力フィーチャを取得し、出力フレームを作成し、入力フィーチャと出力フィーチャをバインドして、モデルを評価します。
private async Task EvaluateModelAsync(
VideoFrame _inputFrame,
LearningModelSession _session,
IReadOnlyList<ILearningModelFeatureDescriptor> _inputFeatures,
IReadOnlyList<ILearningModelFeatureDescriptor> _outputFeatures,
LearningModel _model)
{
ImageFeatureDescriptor _inputImageDescription;
TensorFeatureDescriptor _outputImageDescription;
LearningModelBinding _binding = null;
VideoFrame _outputFrame = null;
LearningModelEvaluationResult _results;
try
{
// Retrieve the first input feature which is an image
_inputImageDescription =
_inputFeatures.FirstOrDefault(feature => feature.Kind == LearningModelFeatureKind.Image)
as ImageFeatureDescriptor;
// Retrieve the first output feature which is a tensor
_outputImageDescription =
_outputFeatures.FirstOrDefault(feature => feature.Kind == LearningModelFeatureKind.Tensor)
as TensorFeatureDescriptor;
// Create output frame based on expected image width and height
_outputFrame = new VideoFrame(
BitmapPixelFormat.Bgra8,
(int)_inputImageDescription.Width,
(int)_inputImageDescription.Height);
// Create binding and then bind input/output features
_binding = new LearningModelBinding(_session);
_binding.Bind(_inputImageDescription.Name, _inputFrame);
_binding.Bind(_outputImageDescription.Name, _outputFrame);
// Evaluate and get the results
_results = await _session.EvaluateAsync(_binding, "test");
}
catch (Exception ex)
{
StatusBlock.Text = $"error: {ex.Message}";
_model = null;
}
}
注釈
Windows Server
Windows Server でこの API を使用するには、Windows Server 2019 とデスクトップ エクスペリエンスを使用する必要があります。
スレッド セーフ
この API はスレッド セーフです。