Gravar mensagens de eventos no Azure Data Lake Storage Gen2 com a API de DataStream do Apache Flink®
Observação
Desativaremos o Microsoft Azure HDInsight no AKS em 31 de janeiro de 2025. Para evitar o encerramento abrupto das suas cargas de trabalho, você precisará migrá-las para o Microsoft Fabric ou para um produto equivalente do Azure antes de 31 de janeiro de 2025. Os clusters restantes em sua assinatura serão interrompidos e removidos do host.
Somente o suporte básico estará disponível até a data de desativação.
Importante
Esse recurso está atualmente na visualização. Os Termos de uso complementares para versões prévias do Microsoft Azure incluem mais termos legais que se aplicam aos recursos do Azure que estão em versão beta, em versão prévia ou ainda não lançados em disponibilidade geral. Para obter informações sobre essa versão prévia específica, confira Informações sobre a versão prévia do Azure HDInsight no AKS. No caso de perguntas ou sugestões de recursos, envie uma solicitação no AskHDInsight com os detalhes e siga-nos para ver mais atualizações sobre a Comunidade do Azure HDInsight.
O Apache Flink usa sistemas de arquivos para consumir e armazenar dados persistentemente, tanto para os resultados de aplicativos quanto para tolerância e recuperação de falhas. Nesse artigo, saiba como gravar mensagens de evento no Azure Data Lake Storage Gen2 com a API DataStream.
Pré-requisitos
- Cluster do Apache Flink no Azure HDInsight no AKS
- Cluster do Apache Kafka no Azure HDInsight
- Você precisa garantir que as configurações de rede sejam cuidadas conforme descrito em Usar o Apache Kafka no HDInsight. Verifique se o HDInsight em clusters AKS e HDInsight está na mesma Rede Virtual.
- Usar o MSI para acessar o ADLS Gen2
- IntelliJ para desenvolvimento em uma VM do Azure no HDInsight na Rede Virtual do AKS
Conector do FileSystem do Apache Flink
Esse conector do sistema de arquivos fornece as mesmas garantias para BATCH e STREAMING e foi projetado para fornecer exatamente uma semântica única para execução de STREAMING. Para obter mais informações, consulte Flink DataStream Filesystem.
Conector do Apache Kafka
O Flink fornece um conector do Apache Kafka para ler dados e gravar dados em tópicos do Kafka com garantias exatamente uma vez. Para obter mais informações, consulte Conector do Apache Kafka.
Criar o projeto para o Apache Flink
pom.xml no IntelliJ IDEA
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<flink.version>1.17.0</flink.version>
<java.version>1.8</java.version>
<scala.binary.version>2.12</scala.binary.version>
<kafka.version>3.2.0</kafka.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-files -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-files</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Programa para Coletor do ADLS Gen2
abfsGen2.java
Observação
Substituir os bootStrapServers do cluster Apache Kafka no HDInsight pelos seus próprios agentes para o Kafka 3.2
package contoso.example;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.configuration.MemorySize;
import org.apache.flink.connector.file.sink.FileSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;
import java.time.Duration;
public class KafkaSinkToGen2 {
public static void main(String[] args) throws Exception {
// 1. get stream execution env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Configuration flinkConfig = new Configuration();
flinkConfig.setString("classloader.resolve-order", "parent-first");
env.getConfig().setGlobalJobParameters(flinkConfig);
// 2. read kafka message as stream input, update your broker ip's
String brokers = "<update-broker-ip>:9092,<update-broker-ip>:9092,<update-broker-ip>:9092";
KafkaSource<String> source = KafkaSource.<String>builder()
.setBootstrapServers(brokers)
.setTopics("click_events")
.setGroupId("my-group")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();
DataStream<String> stream = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
stream.print();
// 3. sink to gen2, update container name and storage path
String outputPath = "abfs://<container-name>@<storage-path>.dfs.core.windows.net/flink/data/click_events";
final FileSink<String> sink = FileSink
.forRowFormat(new Path(outputPath), new SimpleStringEncoder<String>("UTF-8"))
.withRollingPolicy(
DefaultRollingPolicy.builder()
.withRolloverInterval(Duration.ofMinutes(2))
.withInactivityInterval(Duration.ofMinutes(3))
.withMaxPartSize(MemorySize.ofMebiBytes(5))
.build())
.build();
stream.sinkTo(sink);
// 4. run stream
env.execute("Kafka Sink To Gen2");
}
}
Empacotar o jar e enviar para o Apache Flink.
Carregue o jar no ABFS.
Passe as informações do jar do trabalho na criação do cluster
AppMode
.Observação
Certifique-se de adicionar classloader.resolve-order como 'parent-first' e hadoop.classpath.enable como
true
Selecione a agregação do Log de Trabalhos para enviar logs de trabalho por push para a conta de armazenamento.
Você pode ver o trabalho em execução.
Validar dados de streaming no ADLS Gen2
Estamos vendo o streaming click_events
no ADLS Gen2.
Você pode especificar uma política sem interrupção que rola o arquivo de parte em andamento em qualquer uma das três condições a seguir:
.withRollingPolicy(
DefaultRollingPolicy.builder()
.withRolloverInterval(Duration.ofMinutes(5))
.withInactivityInterval(Duration.ofMinutes(3))
.withMaxPartSize(MemorySize.ofMebiBytes(5))
.build())
Referência
- Conector do Apache Kafka
- Sistema de arquivos Flink DataStream
- Site do Apache Flink
- Apache, Apache Kafka, Kafka, Apache Flink, Flink e nomes de projetos de código aberto associados são marcas registradas da Apache Software Foundation (ASF).