Como definir um tipo genérico com a emissão de reflexão
Este artigo mostra como criar um tipo genérico simples com dois parâmetros de tipo, como aplicar restrições de classe, restrições de interface e restrições especiais aos parâmetros de tipo, e como criar membros que usam os parâmetros de tipo da classe como tipos de parâmetro e tipos de retorno.
Importante
Um método não é genérico apenas porque pertence a um tipo genérico e usa os parâmetros de tipo desse tipo. Um método será genérico somente se ele tiver sua própria lista de parâmetros de tipo. A maioria dos métodos em tipos genéricos não é genérica, como neste exemplo. Para obter um exemplo de emissão de um método genérico, consulte Como definir um método genérico com a emissão de reflexão.
Definir um tipo genérico
Defina um assembly dinâmico chamado
GenericEmitExample1
. Neste exemplo, o assembly é executado e salvo no disco, portanto, AssemblyBuilderAccess.RunAndSave é especificado.AppDomain^ myDomain = AppDomain::CurrentDomain; AssemblyName^ myAsmName = gcnew AssemblyName( L"GenericEmitExample1" ); AssemblyBuilder^ myAssembly = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::RunAndSave );
AppDomain myDomain = AppDomain.CurrentDomain; AssemblyName myAsmName = new AssemblyName("GenericEmitExample1"); AssemblyBuilder myAssembly = myDomain.DefineDynamicAssembly(myAsmName, AssemblyBuilderAccess.RunAndSave);
Dim myDomain As AppDomain = AppDomain.CurrentDomain Dim myAsmName As New AssemblyName("GenericEmitExample1") Dim myAssembly As AssemblyBuilder = myDomain.DefineDynamicAssembly( _ myAsmName, _ AssemblyBuilderAccess.RunAndSave)
Defina um módulo dinâmico. Um assembly é composto por módulos executáveis. Para um assembly de modo único, o nome do módulo é igual ao nome do assembly e o nome do arquivo é o nome do módulo com a adição de uma extensão.
ModuleBuilder^ myModule = myAssembly->DefineDynamicModule( myAsmName->Name, String::Concat( myAsmName->Name, L".dll" ) );
ModuleBuilder myModule = myAssembly.DefineDynamicModule(myAsmName.Name, myAsmName.Name + ".dll");
Dim myModule As ModuleBuilder = myAssembly.DefineDynamicModule( _ myAsmName.Name, _ myAsmName.Name & ".dll")
Defina uma classe. Nesse exemplo, a classe é chamada
Sample
.TypeBuilder^ myType = myModule->DefineType( L"Sample", TypeAttributes::Public );
TypeBuilder myType = myModule.DefineType("Sample", TypeAttributes.Public);
Dim myType As TypeBuilder = myModule.DefineType( _ "Sample", _ TypeAttributes.Public)
Defina os parâmetros de tipo genérico de
Sample
passando uma matriz de cadeias de caracteres que contém os nomes dos parâmetros para o método TypeBuilder.DefineGenericParameters. Isso torna a classe um tipo genérico. O valor retornado é uma matriz de objetos GenericTypeParameterBuilder que representam os parâmetros de tipo, que podem ser usados em seu código emitido.No código a seguir,
Sample
se torna um tipo genérico om os parâmetros de tipoTFirst
eTSecond
. Para tornar o código mais fácil de ler, cada um GenericTypeParameterBuilder é colocado em uma variável com o mesmo nome que o parâmetro de tipo.array<String^>^typeParamNames = {L"TFirst",L"TSecond"}; array<GenericTypeParameterBuilder^>^typeParams = myType->DefineGenericParameters( typeParamNames ); GenericTypeParameterBuilder^ TFirst = typeParams[0]; GenericTypeParameterBuilder^ TSecond = typeParams[1];
string[] typeParamNames = {"TFirst", "TSecond"}; GenericTypeParameterBuilder[] typeParams = myType.DefineGenericParameters(typeParamNames); GenericTypeParameterBuilder TFirst = typeParams[0]; GenericTypeParameterBuilder TSecond = typeParams[1];
Dim typeParamNames() As String = {"TFirst", "TSecond"} Dim typeParams() As GenericTypeParameterBuilder = _ myType.DefineGenericParameters(typeParamNames) Dim TFirst As GenericTypeParameterBuilder = typeParams(0) Dim TSecond As GenericTypeParameterBuilder = typeParams(1)
Adicione restrições especiais aos parâmetros de tipo. Neste exemplo, o parâmetro de tipo
TFirst
é restrito para tipos que têm construtores sem parâmetros e para tipos de referência.TFirst->SetGenericParameterAttributes( GenericParameterAttributes::DefaultConstructorConstraint | GenericParameterAttributes::ReferenceTypeConstraint );
TFirst.SetGenericParameterAttributes( GenericParameterAttributes.DefaultConstructorConstraint | GenericParameterAttributes.ReferenceTypeConstraint);
TFirst.SetGenericParameterAttributes( _ GenericParameterAttributes.DefaultConstructorConstraint _ Or GenericParameterAttributes.ReferenceTypeConstraint)
Opcionalmente, adicione restrições de classe e interface aos parâmetros de tipo. Neste exemplo, o parâmetro de tipo
TFirst
é restrito a tipos que derivam da classe base representada pelo objeto Type contido na variávelbaseType
e que implementam as interfaces cujos tipos estão contidos nas variáveisinterfaceA
einterfaceB
. Consulte o exemplo de código para a declaração e atribuição dessas variáveis.array<Type^>^interfaceTypes = { interfaceA, interfaceB }; TSecond->SetInterfaceConstraints( interfaceTypes ); TSecond->SetBaseTypeConstraint( baseType );
TSecond.SetBaseTypeConstraint(baseType); Type[] interfaceTypes = {interfaceA, interfaceB}; TSecond.SetInterfaceConstraints(interfaceTypes);
TSecond.SetBaseTypeConstraint(baseType) Dim interfaceTypes() As Type = {interfaceA, interfaceB} TSecond.SetInterfaceConstraints(interfaceTypes)
Defina um campo. Neste exemplo, o tipo do campo é especificado pelo parâmetro de tipo
TFirst
. GenericTypeParameterBuilder deriva de Type, portanto, você pode usar parâmetros de tipo genérico em qualquer lugar que um tipo pode ser usado.FieldBuilder^ exField = myType->DefineField("ExampleField", TFirst, FieldAttributes::Private);
FieldBuilder exField = myType.DefineField("ExampleField", TFirst, FieldAttributes.Private);
Dim exField As FieldBuilder = _ myType.DefineField("ExampleField", TFirst, _ FieldAttributes.Private)
Defina um método que usa os parâmetros de tipo do tipo genérico. Observe que esses métodos não são genéricos, a menos que tenham suas próprias listas de parâmetros de tipo. O código a seguir define um método
static
(Shared
no Visual Basic) que usa uma matriz deTFirst
e retorna umList<TFirst>
(List(Of TFirst)
no Visual Basic) que contém todos os elementos da matriz. Para definir esse método, é necessário criar o tipoList<TFirst>
chamando MakeGenericType na definição de tipo genérico,List<T>
. (OT
é omitido quando você usa o operadortypeof
(GetType
no Visual Basic) para obter a definição de tipo genérico.) O tipo de parâmetro é criado usando o método MakeArrayType.Type^ listOf = List::typeid; Type^ listOfTFirst = listOf->MakeGenericType(TFirst); array<Type^>^ mParamTypes = { TFirst->MakeArrayType() }; MethodBuilder^ exMethod = myType->DefineMethod("ExampleMethod", MethodAttributes::Public | MethodAttributes::Static, listOfTFirst, mParamTypes);
Type listOf = typeof(List<>); Type listOfTFirst = listOf.MakeGenericType(TFirst); Type[] mParamTypes = {TFirst.MakeArrayType()}; MethodBuilder exMethod = myType.DefineMethod("ExampleMethod", MethodAttributes.Public | MethodAttributes.Static, listOfTFirst, mParamTypes);
Dim listOf As Type = GetType(List(Of )) Dim listOfTFirst As Type = listOf.MakeGenericType(TFirst) Dim mParamTypes() As Type = {TFirst.MakeArrayType()} Dim exMethod As MethodBuilder = _ myType.DefineMethod("ExampleMethod", _ MethodAttributes.Public Or MethodAttributes.Static, _ listOfTFirst, _ mParamTypes)
Emita o corpo do método. O corpo do método consiste em três opcodes que carregam a matriz de entrada para a pilha, chamem o construtor
List<TFirst>
que recebeIEnumerable<TFirst>
(que realiza todo o trabalho de colocar os elementos de entrada na lista) e retorna (deixando o novo objeto List<T> na pilha). A parte difícil de emitir esse código é obter o construtor.O método GetConstructor não tem suporte em um GenericTypeParameterBuilder, portanto, não é possível obter o construtor de
List<TFirst>
diretamente. Primeiro, é necessário obter o construtor da definição de tipo genéricoList<T>
e, em seguida, chamar um método que o converte para o construtor correspondente doList<TFirst>
.O construtor usado para este exemplo de código utiliza um
IEnumerable<T>
. No entanto, observe que essa não é a definição de tipo genérico da interface genérica IEnumerable<T>, em vez disso, o parâmetro de tipoT
deList<T>
deve ser substituído pelo parâmetro de tipoT
deIEnumerable<T>
. (Isso parece confuso apenas porque ambos os tipos têm parâmetros de tipo chamadosT
. É por isso que este exemplo de código usa os nomesTFirst
eTSecond
.) Para obter o tipo do argumento construtor, comece com a definição de tipo genéricoIEnumerable<T>
e chame MakeGenericType com o primeiro parâmetro de tipo genérico deList<T>
. A lista de argumentos do construtor deve ser passada como uma matriz, com apenas um argumento nesse caso.Observação
A definição de tipo genérico é expressa como
IEnumerable<>
quando você usa o operadortypeof
em C# ouIEnumerable(Of )
quando usa o operadorGetType
no Visual Basic.Agora é possível obter o construtor de
List<T>
chamando GetConstructor na definição de tipo genérico. Para converter esse construtor para o construtor correspondente doList<TFirst>
, passeList<TFirst>
e o construtor deList<T>
para o método TypeBuilder.GetConstructor(Type, ConstructorInfo) estático.ILGenerator^ ilgen = exMethod->GetILGenerator(); Type^ ienumOf = IEnumerable::typeid; Type^ TfromListOf = listOf->GetGenericArguments()[0]; Type^ ienumOfT = ienumOf->MakeGenericType(TfromListOf); array<Type^>^ ctorArgs = {ienumOfT}; ConstructorInfo^ ctorPrep = listOf->GetConstructor(ctorArgs); ConstructorInfo^ ctor = TypeBuilder::GetConstructor(listOfTFirst, ctorPrep); ilgen->Emit(OpCodes::Ldarg_0); ilgen->Emit(OpCodes::Newobj, ctor); ilgen->Emit(OpCodes::Ret);
ILGenerator ilgen = exMethod.GetILGenerator(); Type ienumOf = typeof(IEnumerable<>); Type TfromListOf = listOf.GetGenericArguments()[0]; Type ienumOfT = ienumOf.MakeGenericType(TfromListOf); Type[] ctorArgs = {ienumOfT}; ConstructorInfo ctorPrep = listOf.GetConstructor(ctorArgs); ConstructorInfo ctor = TypeBuilder.GetConstructor(listOfTFirst, ctorPrep); ilgen.Emit(OpCodes.Ldarg_0); ilgen.Emit(OpCodes.Newobj, ctor); ilgen.Emit(OpCodes.Ret);
Dim ilgen As ILGenerator = exMethod.GetILGenerator() Dim ienumOf As Type = GetType(IEnumerable(Of )) Dim listOfTParams() As Type = listOf.GetGenericArguments() Dim TfromListOf As Type = listOfTParams(0) Dim ienumOfT As Type = ienumOf.MakeGenericType(TfromListOf) Dim ctorArgs() As Type = {ienumOfT} Dim ctorPrep As ConstructorInfo = _ listOf.GetConstructor(ctorArgs) Dim ctor As ConstructorInfo = _ TypeBuilder.GetConstructor(listOfTFirst, ctorPrep) ilgen.Emit(OpCodes.Ldarg_0) ilgen.Emit(OpCodes.Newobj, ctor) ilgen.Emit(OpCodes.Ret)
Crie o tipo e salve o arquivo.
Type^ finished = myType->CreateType(); myAssembly->Save( String::Concat( myAsmName->Name, L".dll" ) );
Type finished = myType.CreateType(); myAssembly.Save(myAsmName.Name+".dll");
Dim finished As Type = myType.CreateType() myAssembly.Save(myAsmName.Name & ".dll")
Invoque o método.
ExampleMethod
não é genérico, mas o tipo ao qual ele pertence é genérico. Portanto, para obter um MethodInfo que pode ser invocado, é necessário criar um tipo construído a partir da definição de tipo paraSample
. O tipo construído usa a classeExample
, que atende às restrições emTFirst
porque é um tipo de referência e tem um construtor sem parâmetros padrão e a classeExampleDerived
que atende às restrições emTSecond
. (O código paraExampleDerived
o qual pode ser encontrado na seção de código de exemplo). Esses dois tipos são passados para MakeGenericType para criar o tipo construído. O MethodInfo é então obtido usando o método GetMethod.array<Type^>^ typeArgs = { Example::typeid, ExampleDerived::typeid }; Type^ constructed = finished->MakeGenericType(typeArgs); MethodInfo^ mi = constructed->GetMethod("ExampleMethod");
Type[] typeArgs = {typeof(Example), typeof(ExampleDerived)}; Type constructed = finished.MakeGenericType(typeArgs); MethodInfo mi = constructed.GetMethod("ExampleMethod");
Dim typeArgs() As Type = _ {GetType(Example), GetType(ExampleDerived)} Dim constructed As Type = finished.MakeGenericType(typeArgs) Dim mi As MethodInfo = constructed.GetMethod("ExampleMethod")
O código a seguir cria uma matriz de objetos
Example
, coloca essa matriz em uma matriz do tipo Object que representa os argumentos do método a ser invocado e os passa para o método Invoke(Object, Object[]). O primeiro argumento do método Invoke é uma referência nula porque o método éstatic
.array<Example^>^ input = { gcnew Example(), gcnew Example() }; array<Object^>^ arguments = { input }; List<Example^>^ listX = (List<Example^>^) mi->Invoke(nullptr, arguments); Console::WriteLine( "\nThere are {0} elements in the List<Example>.", listX->Count);
Example[] input = {new Example(), new Example()}; object[] arguments = {input}; List<Example> listX = (List<Example>) mi.Invoke(null, arguments); Console.WriteLine( "\nThere are {0} elements in the List<Example>.", listX.Count);
Dim input() As Example = {New Example(), New Example()} Dim arguments() As Object = {input} Dim listX As List(Of Example) = mi.Invoke(Nothing, arguments) Console.WriteLine(vbLf & _ "There are {0} elements in the List(Of Example).", _ listX.Count _ )
Exemplo
O exemplo de código a seguir define uma classe chamada Sample
, junto com uma classe base e duas interfaces. O programa define dois parâmetros de tipo genérico para Sample
, transformando-o em um tipo genérico. Os parâmetros de tipo são a única coisa que torna um tipo genérico. O programa mostra isso exibindo uma mensagem de teste antes e após a definição dos parâmetros de tipo.
O parâmetro de tipo TSecond
é usado para demonstrar as restrições de interface e de classe, usando a classe base e interfaces e o parâmetro de tipo TFirst
é usado para demonstrar restrições especiais.
O exemplo de código define um campo e um método usando os parâmetros de tipo da classe para o tipo de campo e para o parâmetro e tipo de retorno do método.
Após a classe Sample
ter sido criada, o método é invocado.
O programa inclui um método que lista informações sobre um tipo genérico e um método que lista as restrições especiais em um parâmetro de tipo. Esses métodos são usados para exibir informações sobre a classe Sample
finalizada.
O programa salva o módulo finalizado no disco como GenericEmitExample1.dll
, assim você pode abri-lo com o Ildasm.exe (IL Disassembler) e examine o CIL para a classe Sample
.
using namespace System;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
using namespace System::Collections::Generic;
// Dummy class to satisfy TFirst constraints.
//
public ref class Example {};
// Define a trivial base class and two trivial interfaces
// to use when demonstrating constraints.
//
public ref class ExampleBase {};
public interface class IExampleA {};
public interface class IExampleB {};
// Define a trivial type that can substitute for type parameter
// TSecond.
//
public ref class ExampleDerived : ExampleBase, IExampleA, IExampleB {};
// List the constraint flags. The GenericParameterAttributes
// enumeration contains two sets of attributes, variance and
// constraints. For this example, only constraints are used.
//
static void ListConstraintAttributes( Type^ t )
{
// Mask off the constraint flags.
GenericParameterAttributes constraints =
t->GenericParameterAttributes &
GenericParameterAttributes::SpecialConstraintMask;
if ((constraints & GenericParameterAttributes::ReferenceTypeConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" ReferenceTypeConstraint");
if ((constraints & GenericParameterAttributes::NotNullableValueTypeConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" NotNullableValueTypeConstraint");
if ((constraints & GenericParameterAttributes::DefaultConstructorConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" DefaultConstructorConstraint");
}
static void DisplayGenericParameters( Type^ t )
{
if (!t->IsGenericType)
{
Console::WriteLine( L"Type '{0}' is not generic." );
return;
}
if (!t->IsGenericTypeDefinition)
t = t->GetGenericTypeDefinition();
array<Type^>^ typeParameters = t->GetGenericArguments();
Console::WriteLine( L"\r\nListing {0} type parameters for type '{1}'.",
typeParameters->Length, t );
for each ( Type^ tParam in typeParameters )
{
Console::WriteLine( L"\r\nType parameter {0}:",
tParam->ToString() );
for each (Type^ c in tParam->GetGenericParameterConstraints())
{
if (c->IsInterface)
Console::WriteLine( L" Interface constraint: {0}", c);
else
Console::WriteLine( L" Base type constraint: {0}", c);
}
ListConstraintAttributes(tParam);
}
}
void main()
{
// Define a dynamic assembly to contain the sample type. The
// assembly will be run and also saved to disk, so
// AssemblyBuilderAccess.RunAndSave is specified.
//
AppDomain^ myDomain = AppDomain::CurrentDomain;
AssemblyName^ myAsmName = gcnew AssemblyName( L"GenericEmitExample1" );
AssemblyBuilder^ myAssembly = myDomain->DefineDynamicAssembly(
myAsmName, AssemblyBuilderAccess::RunAndSave );
// An assembly is made up of executable modules. For a single-
// module assembly, the module name and file name are the same
// as the assembly name.
//
ModuleBuilder^ myModule = myAssembly->DefineDynamicModule(
myAsmName->Name, String::Concat( myAsmName->Name, L".dll" ) );
// Get type objects for the base class trivial interfaces to
// be used as constraints.
//
Type^ baseType = ExampleBase::typeid;
Type^ interfaceA = IExampleA::typeid;
Type^ interfaceB = IExampleB::typeid;
// Define the sample type.
//
TypeBuilder^ myType = myModule->DefineType( L"Sample",
TypeAttributes::Public );
Console::WriteLine( L"Type 'Sample' is generic: {0}",
myType->IsGenericType );
// Define type parameters for the type. Until you do this,
// the type is not generic, as the preceding and following
// WriteLine statements show. The type parameter names are
// specified as an array of strings. To make the code
// easier to read, each GenericTypeParameterBuilder is placed
// in a variable with the same name as the type parameter.
//
array<String^>^typeParamNames = {L"TFirst",L"TSecond"};
array<GenericTypeParameterBuilder^>^typeParams =
myType->DefineGenericParameters( typeParamNames );
GenericTypeParameterBuilder^ TFirst = typeParams[0];
GenericTypeParameterBuilder^ TSecond = typeParams[1];
Console::WriteLine( L"Type 'Sample' is generic: {0}",
myType->IsGenericType );
// Apply constraints to the type parameters.
//
// A type that is substituted for the first parameter, TFirst,
// must be a reference type and must have a parameterless
// constructor.
TFirst->SetGenericParameterAttributes(
GenericParameterAttributes::DefaultConstructorConstraint |
GenericParameterAttributes::ReferenceTypeConstraint
);
// A type that is substituted for the second type
// parameter must implement IExampleA and IExampleB, and
// inherit from the trivial test class ExampleBase. The
// interface constraints are specified as an array
// containing the interface types.
array<Type^>^interfaceTypes = { interfaceA, interfaceB };
TSecond->SetInterfaceConstraints( interfaceTypes );
TSecond->SetBaseTypeConstraint( baseType );
// The following code adds a private field named ExampleField,
// of type TFirst.
FieldBuilder^ exField =
myType->DefineField("ExampleField", TFirst,
FieldAttributes::Private);
// Define a static method that takes an array of TFirst and
// returns a List<TFirst> containing all the elements of
// the array. To define this method it is necessary to create
// the type List<TFirst> by calling MakeGenericType on the
// generic type definition, generic<T> List.
// The parameter type is created by using the
// MakeArrayType method.
//
Type^ listOf = List::typeid;
Type^ listOfTFirst = listOf->MakeGenericType(TFirst);
array<Type^>^ mParamTypes = { TFirst->MakeArrayType() };
MethodBuilder^ exMethod =
myType->DefineMethod("ExampleMethod",
MethodAttributes::Public | MethodAttributes::Static,
listOfTFirst,
mParamTypes);
// Emit the method body.
// The method body consists of just three opcodes, to load
// the input array onto the execution stack, to call the
// List<TFirst> constructor that takes IEnumerable<TFirst>,
// which does all the work of putting the input elements into
// the list, and to return, leaving the list on the stack. The
// hard work is getting the constructor.
//
// The GetConstructor method is not supported on a
// GenericTypeParameterBuilder, so it is not possible to get
// the constructor of List<TFirst> directly. There are two
// steps, first getting the constructor of generic<T> List and then
// calling a method that converts it to the corresponding
// constructor of List<TFirst>.
//
// The constructor needed here is the one that takes an
// IEnumerable<T>. Note, however, that this is not the
// generic type definition of generic<T> IEnumerable; instead, the
// T from generic<T> List must be substituted for the T of
// generic<T> IEnumerable. (This seems confusing only because both
// types have type parameters named T. That is why this example
// uses the somewhat silly names TFirst and TSecond.) To get
// the type of the constructor argument, take the generic
// type definition generic<T> IEnumerable and
// call MakeGenericType with the first generic type parameter
// of generic<T> List. The constructor argument list must be passed
// as an array, with just one argument in this case.
//
// Now it is possible to get the constructor of generic<T> List,
// using GetConstructor on the generic type definition. To get
// the constructor of List<TFirst>, pass List<TFirst> and
// the constructor from generic<T> List to the static
// TypeBuilder.GetConstructor method.
//
ILGenerator^ ilgen = exMethod->GetILGenerator();
Type^ ienumOf = IEnumerable::typeid;
Type^ TfromListOf = listOf->GetGenericArguments()[0];
Type^ ienumOfT = ienumOf->MakeGenericType(TfromListOf);
array<Type^>^ ctorArgs = {ienumOfT};
ConstructorInfo^ ctorPrep = listOf->GetConstructor(ctorArgs);
ConstructorInfo^ ctor =
TypeBuilder::GetConstructor(listOfTFirst, ctorPrep);
ilgen->Emit(OpCodes::Ldarg_0);
ilgen->Emit(OpCodes::Newobj, ctor);
ilgen->Emit(OpCodes::Ret);
// Create the type and save the assembly.
Type^ finished = myType->CreateType();
myAssembly->Save( String::Concat( myAsmName->Name, L".dll" ) );
// Invoke the method.
// ExampleMethod is not generic, but the type it belongs to is
// generic, so in order to get a MethodInfo that can be invoked
// it is necessary to create a constructed type. The Example
// class satisfies the constraints on TFirst, because it is a
// reference type and has a default constructor. In order to
// have a class that satisfies the constraints on TSecond,
// this code example defines the ExampleDerived type. These
// two types are passed to MakeGenericMethod to create the
// constructed type.
//
array<Type^>^ typeArgs =
{ Example::typeid, ExampleDerived::typeid };
Type^ constructed = finished->MakeGenericType(typeArgs);
MethodInfo^ mi = constructed->GetMethod("ExampleMethod");
// Create an array of Example objects, as input to the generic
// method. This array must be passed as the only element of an
// array of arguments. The first argument of Invoke is
// null, because ExampleMethod is static. Display the count
// on the resulting List<Example>.
//
array<Example^>^ input = { gcnew Example(), gcnew Example() };
array<Object^>^ arguments = { input };
List<Example^>^ listX =
(List<Example^>^) mi->Invoke(nullptr, arguments);
Console::WriteLine(
"\nThere are {0} elements in the List<Example>.",
listX->Count);
DisplayGenericParameters(finished);
}
/* This code example produces the following output:
Type 'Sample' is generic: False
Type 'Sample' is generic: True
There are 2 elements in the List<Example>.
Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
Type parameter TFirst:
ReferenceTypeConstraint
DefaultConstructorConstraint
Type parameter TSecond:
Interface constraint: IExampleA
Interface constraint: IExampleB
Base type constraint: ExampleBase
*/
using System;
using System.Reflection;
using System.Reflection.Emit;
using System.Collections.Generic;
// Define a trivial base class and two trivial interfaces
// to use when demonstrating constraints.
//
public class ExampleBase {}
public interface IExampleA {}
public interface IExampleB {}
// Define a trivial type that can substitute for type parameter
// TSecond.
//
public class ExampleDerived : ExampleBase, IExampleA, IExampleB {}
public class Example
{
public static void Main()
{
// Define a dynamic assembly to contain the sample type. The
// assembly will not be run, but only saved to disk, so
// AssemblyBuilderAccess.Save is specified.
//
AppDomain myDomain = AppDomain.CurrentDomain;
AssemblyName myAsmName = new AssemblyName("GenericEmitExample1");
AssemblyBuilder myAssembly =
myDomain.DefineDynamicAssembly(myAsmName,
AssemblyBuilderAccess.RunAndSave);
// An assembly is made up of executable modules. For a single-
// module assembly, the module name and file name are the same
// as the assembly name.
//
ModuleBuilder myModule =
myAssembly.DefineDynamicModule(myAsmName.Name,
myAsmName.Name + ".dll");
// Get type objects for the base class trivial interfaces to
// be used as constraints.
//
Type baseType = typeof(ExampleBase);
Type interfaceA = typeof(IExampleA);
Type interfaceB = typeof(IExampleB);
// Define the sample type.
//
TypeBuilder myType =
myModule.DefineType("Sample", TypeAttributes.Public);
Console.WriteLine("Type 'Sample' is generic: {0}",
myType.IsGenericType);
// Define type parameters for the type. Until you do this,
// the type is not generic, as the preceding and following
// WriteLine statements show. The type parameter names are
// specified as an array of strings. To make the code
// easier to read, each GenericTypeParameterBuilder is placed
// in a variable with the same name as the type parameter.
//
string[] typeParamNames = {"TFirst", "TSecond"};
GenericTypeParameterBuilder[] typeParams =
myType.DefineGenericParameters(typeParamNames);
GenericTypeParameterBuilder TFirst = typeParams[0];
GenericTypeParameterBuilder TSecond = typeParams[1];
Console.WriteLine("Type 'Sample' is generic: {0}",
myType.IsGenericType);
// Apply constraints to the type parameters.
//
// A type that is substituted for the first parameter, TFirst,
// must be a reference type and must have a parameterless
// constructor.
TFirst.SetGenericParameterAttributes(
GenericParameterAttributes.DefaultConstructorConstraint |
GenericParameterAttributes.ReferenceTypeConstraint);
// A type that is substituted for the second type
// parameter must implement IExampleA and IExampleB, and
// inherit from the trivial test class ExampleBase. The
// interface constraints are specified as an array
// containing the interface types.
TSecond.SetBaseTypeConstraint(baseType);
Type[] interfaceTypes = {interfaceA, interfaceB};
TSecond.SetInterfaceConstraints(interfaceTypes);
// The following code adds a private field named ExampleField,
// of type TFirst.
FieldBuilder exField =
myType.DefineField("ExampleField", TFirst,
FieldAttributes.Private);
// Define a static method that takes an array of TFirst and
// returns a List<TFirst> containing all the elements of
// the array. To define this method it is necessary to create
// the type List<TFirst> by calling MakeGenericType on the
// generic type definition, List<T>. (The T is omitted with
// the typeof operator when you get the generic type
// definition.) The parameter type is created by using the
// MakeArrayType method.
//
Type listOf = typeof(List<>);
Type listOfTFirst = listOf.MakeGenericType(TFirst);
Type[] mParamTypes = {TFirst.MakeArrayType()};
MethodBuilder exMethod =
myType.DefineMethod("ExampleMethod",
MethodAttributes.Public | MethodAttributes.Static,
listOfTFirst,
mParamTypes);
// Emit the method body.
// The method body consists of just three opcodes, to load
// the input array onto the execution stack, to call the
// List<TFirst> constructor that takes IEnumerable<TFirst>,
// which does all the work of putting the input elements into
// the list, and to return, leaving the list on the stack. The
// hard work is getting the constructor.
//
// The GetConstructor method is not supported on a
// GenericTypeParameterBuilder, so it is not possible to get
// the constructor of List<TFirst> directly. There are two
// steps, first getting the constructor of List<T> and then
// calling a method that converts it to the corresponding
// constructor of List<TFirst>.
//
// The constructor needed here is the one that takes an
// IEnumerable<T>. Note, however, that this is not the
// generic type definition of IEnumerable<T>; instead, the
// T from List<T> must be substituted for the T of
// IEnumerable<T>. (This seems confusing only because both
// types have type parameters named T. That is why this example
// uses the somewhat silly names TFirst and TSecond.) To get
// the type of the constructor argument, take the generic
// type definition IEnumerable<T> (expressed as
// IEnumerable<> when you use the typeof operator) and
// call MakeGenericType with the first generic type parameter
// of List<T>. The constructor argument list must be passed
// as an array, with just one argument in this case.
//
// Now it is possible to get the constructor of List<T>,
// using GetConstructor on the generic type definition. To get
// the constructor of List<TFirst>, pass List<TFirst> and
// the constructor from List<T> to the static
// TypeBuilder.GetConstructor method.
//
ILGenerator ilgen = exMethod.GetILGenerator();
Type ienumOf = typeof(IEnumerable<>);
Type TfromListOf = listOf.GetGenericArguments()[0];
Type ienumOfT = ienumOf.MakeGenericType(TfromListOf);
Type[] ctorArgs = {ienumOfT};
ConstructorInfo ctorPrep = listOf.GetConstructor(ctorArgs);
ConstructorInfo ctor =
TypeBuilder.GetConstructor(listOfTFirst, ctorPrep);
ilgen.Emit(OpCodes.Ldarg_0);
ilgen.Emit(OpCodes.Newobj, ctor);
ilgen.Emit(OpCodes.Ret);
// Create the type and save the assembly.
Type finished = myType.CreateType();
myAssembly.Save(myAsmName.Name+".dll");
// Invoke the method.
// ExampleMethod is not generic, but the type it belongs to is
// generic, so in order to get a MethodInfo that can be invoked
// it is necessary to create a constructed type. The Example
// class satisfies the constraints on TFirst, because it is a
// reference type and has a default constructor. In order to
// have a class that satisfies the constraints on TSecond,
// this code example defines the ExampleDerived type. These
// two types are passed to MakeGenericMethod to create the
// constructed type.
//
Type[] typeArgs = {typeof(Example), typeof(ExampleDerived)};
Type constructed = finished.MakeGenericType(typeArgs);
MethodInfo mi = constructed.GetMethod("ExampleMethod");
// Create an array of Example objects, as input to the generic
// method. This array must be passed as the only element of an
// array of arguments. The first argument of Invoke is
// null, because ExampleMethod is static. Display the count
// on the resulting List<Example>.
//
Example[] input = {new Example(), new Example()};
object[] arguments = {input};
List<Example> listX =
(List<Example>) mi.Invoke(null, arguments);
Console.WriteLine(
"\nThere are {0} elements in the List<Example>.",
listX.Count);
DisplayGenericParameters(finished);
}
private static void DisplayGenericParameters(Type t)
{
if (!t.IsGenericType)
{
Console.WriteLine("Type '{0}' is not generic.");
return;
}
if (!t.IsGenericTypeDefinition)
{
t = t.GetGenericTypeDefinition();
}
Type[] typeParameters = t.GetGenericArguments();
Console.WriteLine("\nListing {0} type parameters for type '{1}'.",
typeParameters.Length, t);
foreach( Type tParam in typeParameters )
{
Console.WriteLine("\r\nType parameter {0}:", tParam.ToString());
foreach( Type c in tParam.GetGenericParameterConstraints() )
{
if (c.IsInterface)
{
Console.WriteLine(" Interface constraint: {0}", c);
}
else
{
Console.WriteLine(" Base type constraint: {0}", c);
}
}
ListConstraintAttributes(tParam);
}
}
// List the constraint flags. The GenericParameterAttributes
// enumeration contains two sets of attributes, variance and
// constraints. For this example, only constraints are used.
//
private static void ListConstraintAttributes(Type t)
{
// Mask off the constraint flags.
GenericParameterAttributes constraints =
t.GenericParameterAttributes & GenericParameterAttributes.SpecialConstraintMask;
if ((constraints & GenericParameterAttributes.ReferenceTypeConstraint)
!= GenericParameterAttributes.None)
{
Console.WriteLine(" ReferenceTypeConstraint");
}
if ((constraints & GenericParameterAttributes.NotNullableValueTypeConstraint)
!= GenericParameterAttributes.None)
{
Console.WriteLine(" NotNullableValueTypeConstraint");
}
if ((constraints & GenericParameterAttributes.DefaultConstructorConstraint)
!=GenericParameterAttributes.None)
{
Console.WriteLine(" DefaultConstructorConstraint");
}
}
}
/* This code example produces the following output:
Type 'Sample' is generic: False
Type 'Sample' is generic: True
There are 2 elements in the List<Example>.
Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
Type parameter TFirst:
ReferenceTypeConstraint
DefaultConstructorConstraint
Type parameter TSecond:
Interface constraint: IExampleA
Interface constraint: IExampleB
Base type constraint: ExampleBase
*/
Imports System.Reflection
Imports System.Reflection.Emit
Imports System.Collections.Generic
' Define a trivial base class and two trivial interfaces
' to use when demonstrating constraints.
'
Public Class ExampleBase
End Class
Public Interface IExampleA
End Interface
Public Interface IExampleB
End Interface
' Define a trivial type that can substitute for type parameter
' TSecond.
'
Public Class ExampleDerived
Inherits ExampleBase
Implements IExampleA, IExampleB
End Class
Public Class Example
Public Shared Sub Main()
' Define a dynamic assembly to contain the sample type. The
' assembly will not be run, but only saved to disk, so
' AssemblyBuilderAccess.Save is specified.
'
Dim myDomain As AppDomain = AppDomain.CurrentDomain
Dim myAsmName As New AssemblyName("GenericEmitExample1")
Dim myAssembly As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
myAsmName, _
AssemblyBuilderAccess.RunAndSave)
' An assembly is made up of executable modules. For a single-
' module assembly, the module name and file name are the same
' as the assembly name.
'
Dim myModule As ModuleBuilder = myAssembly.DefineDynamicModule( _
myAsmName.Name, _
myAsmName.Name & ".dll")
' Get type objects for the base class trivial interfaces to
' be used as constraints.
'
Dim baseType As Type = GetType(ExampleBase)
Dim interfaceA As Type = GetType(IExampleA)
Dim interfaceB As Type = GetType(IExampleB)
' Define the sample type.
'
Dim myType As TypeBuilder = myModule.DefineType( _
"Sample", _
TypeAttributes.Public)
Console.WriteLine("Type 'Sample' is generic: {0}", _
myType.IsGenericType)
' Define type parameters for the type. Until you do this,
' the type is not generic, as the preceding and following
' WriteLine statements show. The type parameter names are
' specified as an array of strings. To make the code
' easier to read, each GenericTypeParameterBuilder is placed
' in a variable with the same name as the type parameter.
'
Dim typeParamNames() As String = {"TFirst", "TSecond"}
Dim typeParams() As GenericTypeParameterBuilder = _
myType.DefineGenericParameters(typeParamNames)
Dim TFirst As GenericTypeParameterBuilder = typeParams(0)
Dim TSecond As GenericTypeParameterBuilder = typeParams(1)
Console.WriteLine("Type 'Sample' is generic: {0}", _
myType.IsGenericType)
' Apply constraints to the type parameters.
'
' A type that is substituted for the first parameter, TFirst,
' must be a reference type and must have a parameterless
' constructor.
TFirst.SetGenericParameterAttributes( _
GenericParameterAttributes.DefaultConstructorConstraint _
Or GenericParameterAttributes.ReferenceTypeConstraint)
' A type that is substituted for the second type
' parameter must implement IExampleA and IExampleB, and
' inherit from the trivial test class ExampleBase. The
' interface constraints are specified as an array
' containing the interface types.
TSecond.SetBaseTypeConstraint(baseType)
Dim interfaceTypes() As Type = {interfaceA, interfaceB}
TSecond.SetInterfaceConstraints(interfaceTypes)
' The following code adds a private field named ExampleField,
' of type TFirst.
Dim exField As FieldBuilder = _
myType.DefineField("ExampleField", TFirst, _
FieldAttributes.Private)
' Define a Shared method that takes an array of TFirst and
' returns a List(Of TFirst) containing all the elements of
' the array. To define this method it is necessary to create
' the type List(Of TFirst) by calling MakeGenericType on the
' generic type definition, List(Of T). (The T is omitted with
' the GetType operator when you get the generic type
' definition.) The parameter type is created by using the
' MakeArrayType method.
'
Dim listOf As Type = GetType(List(Of ))
Dim listOfTFirst As Type = listOf.MakeGenericType(TFirst)
Dim mParamTypes() As Type = {TFirst.MakeArrayType()}
Dim exMethod As MethodBuilder = _
myType.DefineMethod("ExampleMethod", _
MethodAttributes.Public Or MethodAttributes.Static, _
listOfTFirst, _
mParamTypes)
' Emit the method body.
' The method body consists of just three opcodes, to load
' the input array onto the execution stack, to call the
' List(Of TFirst) constructor that takes IEnumerable(Of TFirst),
' which does all the work of putting the input elements into
' the list, and to return, leaving the list on the stack. The
' hard work is getting the constructor.
'
' The GetConstructor method is not supported on a
' GenericTypeParameterBuilder, so it is not possible to get
' the constructor of List(Of TFirst) directly. There are two
' steps, first getting the constructor of List(Of T) and then
' calling a method that converts it to the corresponding
' constructor of List(Of TFirst).
'
' The constructor needed here is the one that takes an
' IEnumerable(Of T). Note, however, that this is not the
' generic type definition of IEnumerable(Of T); instead, the
' T from List(Of T) must be substituted for the T of
' IEnumerable(Of T). (This seems confusing only because both
' types have type parameters named T. That is why this example
' uses the somewhat silly names TFirst and TSecond.) To get
' the type of the constructor argument, take the generic
' type definition IEnumerable(Of T) (expressed as
' IEnumerable(Of ) when you use the GetType operator) and
' call MakeGenericType with the first generic type parameter
' of List(Of T). The constructor argument list must be passed
' as an array, with just one argument in this case.
'
' Now it is possible to get the constructor of List(Of T),
' using GetConstructor on the generic type definition. To get
' the constructor of List(Of TFirst), pass List(Of TFirst) and
' the constructor from List(Of T) to the static
' TypeBuilder.GetConstructor method.
'
Dim ilgen As ILGenerator = exMethod.GetILGenerator()
Dim ienumOf As Type = GetType(IEnumerable(Of ))
Dim listOfTParams() As Type = listOf.GetGenericArguments()
Dim TfromListOf As Type = listOfTParams(0)
Dim ienumOfT As Type = ienumOf.MakeGenericType(TfromListOf)
Dim ctorArgs() As Type = {ienumOfT}
Dim ctorPrep As ConstructorInfo = _
listOf.GetConstructor(ctorArgs)
Dim ctor As ConstructorInfo = _
TypeBuilder.GetConstructor(listOfTFirst, ctorPrep)
ilgen.Emit(OpCodes.Ldarg_0)
ilgen.Emit(OpCodes.Newobj, ctor)
ilgen.Emit(OpCodes.Ret)
' Create the type and save the assembly.
Dim finished As Type = myType.CreateType()
myAssembly.Save(myAsmName.Name & ".dll")
' Invoke the method.
' ExampleMethod is not generic, but the type it belongs to is
' generic, so in order to get a MethodInfo that can be invoked
' it is necessary to create a constructed type. The Example
' class satisfies the constraints on TFirst, because it is a
' reference type and has a default constructor. In order to
' have a class that satisfies the constraints on TSecond,
' this code example defines the ExampleDerived type. These
' two types are passed to MakeGenericMethod to create the
' constructed type.
'
Dim typeArgs() As Type = _
{GetType(Example), GetType(ExampleDerived)}
Dim constructed As Type = finished.MakeGenericType(typeArgs)
Dim mi As MethodInfo = constructed.GetMethod("ExampleMethod")
' Create an array of Example objects, as input to the generic
' method. This array must be passed as the only element of an
' array of arguments. The first argument of Invoke is
' Nothing, because ExampleMethod is Shared. Display the count
' on the resulting List(Of Example).
'
Dim input() As Example = {New Example(), New Example()}
Dim arguments() As Object = {input}
Dim listX As List(Of Example) = mi.Invoke(Nothing, arguments)
Console.WriteLine(vbLf & _
"There are {0} elements in the List(Of Example).", _
listX.Count _
)
DisplayGenericParameters(finished)
End Sub
Private Shared Sub DisplayGenericParameters(ByVal t As Type)
If Not t.IsGenericType Then
Console.WriteLine("Type '{0}' is not generic.")
Return
End If
If Not t.IsGenericTypeDefinition Then _
t = t.GetGenericTypeDefinition()
Dim typeParameters() As Type = t.GetGenericArguments()
Console.WriteLine(vbCrLf & _
"Listing {0} type parameters for type '{1}'.", _
typeParameters.Length, t)
For Each tParam As Type In typeParameters
Console.WriteLine(vbCrLf & "Type parameter {0}:", _
tParam.ToString())
For Each c As Type In tParam.GetGenericParameterConstraints()
If c.IsInterface Then
Console.WriteLine(" Interface constraint: {0}", c)
Else
Console.WriteLine(" Base type constraint: {0}", c)
End If
Next
ListConstraintAttributes(tParam)
Next tParam
End Sub
' List the constraint flags. The GenericParameterAttributes
' enumeration contains two sets of attributes, variance and
' constraints. For this example, only constraints are used.
'
Private Shared Sub ListConstraintAttributes(ByVal t As Type)
' Mask off the constraint flags.
Dim constraints As GenericParameterAttributes = _
t.GenericParameterAttributes And _
GenericParameterAttributes.SpecialConstraintMask
If (constraints And GenericParameterAttributes.ReferenceTypeConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" ReferenceTypeConstraint")
If (constraints And GenericParameterAttributes.NotNullableValueTypeConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" NotNullableValueTypeConstraint")
If (constraints And GenericParameterAttributes.DefaultConstructorConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" DefaultConstructorConstraint")
End Sub
End Class
' This code example produces the following output:
'
'Type 'Sample' is generic: False
'Type 'Sample' is generic: True
'
'There are 2 elements in the List(Of Example).
'
'Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
'
'Type parameter TFirst:
' ReferenceTypeConstraint
' DefaultConstructorConstraint
'
'Type parameter TSecond:
' Interface constraint: IExampleA
' Interface constraint: IExampleB
' Base type constraint: ExampleBase