System.Random classe
Este artigo fornece observações complementares à documentação de referência para essa API.
A Random classe representa um gerador de números pseudoaleatórios, que é um algoritmo que produz uma sequência de números que atendem a certos requisitos estatísticos para aleatoriedade.
Números pseudoaleatórios são escolhidos com igual probabilidade a partir de um conjunto finito de números. Os números escolhidos não são completamente aleatórios porque um algoritmo matemático é usado para selecioná-los, mas eles são suficientemente aleatórios para fins práticos. A implementação da Random classe é baseada em uma versão modificada do algoritmo gerador de números aleatórios subtrativos de Donald E. Knuth. Para obter mais informações, consulte D. E. Knuth. A Arte da Programação de Computadores, Volume 2: Algoritmos Seminuméricos. Addison-Wesley, Reading, MA, terceira edição, 1997.
Para gerar um número aleatório criptograficamente seguro, como um que seja adequado para criar uma senha aleatória, use um dos métodos estáticos na System.Security.Cryptography.RandomNumberGenerator classe.
Instanciar o gerador de números aleatórios
Você instancia o gerador de números aleatórios fornecendo um valor de semente (um valor inicial para o algoritmo de geração de números pseudoaleatórios) para um Random construtor de classe. Você pode fornecer o valor de semente explícita ou implicitamente:
- O Random(Int32) construtor usa um valor de semente explícito que você fornece.
- O Random() construtor usa o valor de semente padrão. Esta é a maneira mais comum de instanciar o gerador de números aleatórios.
No .NET Framework, o valor de propagação padrão é dependente do tempo. No .NET Core, o valor de propagação padrão é produzido pelo gerador de números pseudoaleatórios estáticos de thread.
Se a mesma semente for usada para objetos separados Random , eles gerarão a mesma série de números aleatórios. Isso pode ser útil para criar um conjunto de testes que processa valores aleatórios ou para repetir jogos que derivam seus dados de números aleatórios. No entanto, observe que Random objetos em processos em execução em versões diferentes do .NET Framework podem retornar diferentes séries de números aleatórios, mesmo se eles são instanciados com valores de semente idênticos.
Para produzir diferentes sequências de números aleatórios, você pode tornar o valor de semente dependente do tempo, produzindo assim uma série diferente a cada nova instância do Random. O construtor parametrizado Random(Int32) pode assumir um Int32 valor com base no número de ticks no tempo atual, enquanto o construtor sem Random() parâmetros usa o relógio do sistema para gerar seu valor de semente. No entanto, somente no .NET Framework, como o relógio tem resolução finita, usar o construtor sem parâmetros para criar objetos diferentes Random em sucessão próxima cria geradores de números aleatórios que produzem sequências idênticas de números aleatórios. O exemplo a seguir ilustra como dois Random objetos que são instanciados em sucessão próxima em um aplicativo .NET Framework geram uma série idêntica de números aleatórios. Na maioria dos sistemas Windows, Random os objetos criados dentro de 15 milissegundos um do outro provavelmente têm valores de semente idênticos.
byte[] bytes1 = new byte[100];
byte[] bytes2 = new byte[100];
Random rnd1 = new Random();
Random rnd2 = new Random();
rnd1.NextBytes(bytes1);
rnd2.NextBytes(bytes2);
Console.WriteLine("First Series:");
for (int ctr = bytes1.GetLowerBound(0);
ctr <= bytes1.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes1[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("Second Series:");
for (int ctr = bytes2.GetLowerBound(0);
ctr <= bytes2.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes2[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
let bytes1 = Array.zeroCreate 100
let bytes2 = Array.zeroCreate 100
let rnd1 = Random()
let rnd2 = Random()
rnd1.NextBytes bytes1
rnd2.NextBytes bytes2
printfn "First Series"
for i = bytes1.GetLowerBound 0 to bytes1.GetUpperBound 0 do
printf "%5i" bytes1.[i]
if (i + 1) % 10 = 0 then printfn ""
printfn ""
printfn "Second Series"
for i = bytes2.GetLowerBound 0 to bytes2.GetUpperBound 0 do
printf "%5i" bytes2.[i]
if (i + 1) % 10 = 0 then printfn ""
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
Module modMain
Public Sub Main()
Dim bytes1(99), bytes2(99) As Byte
Dim rnd1 As New Random()
Dim rnd2 As New Random()
rnd1.NextBytes(bytes1)
rnd2.NextBytes(bytes2)
Console.WriteLine("First Series:")
For ctr As Integer = bytes1.GetLowerBound(0) to bytes1.GetUpperBound(0)
Console.Write("{0, 5}", bytes1(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
Console.WriteLine()
Console.WriteLine("Second Series:")
For ctr As Integer = bytes2.GetLowerBound(0) to bytes2.GetUpperBound(0)
Console.Write("{0, 5}", bytes2(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' First Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
'
' Second Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
Para evitar esse problema, crie um único Random objeto em vez de vários objetos. Observe que a Random
classe no .NET Core não tem essa limitação.
Evite várias instanciações
No .NET Framework, inicializar dois geradores de números aleatórios em um loop apertado ou em sucessão rápida cria dois geradores de números aleatórios que podem produzir sequências idênticas de números aleatórios. Na maioria dos casos, essa não é a intenção do desenvolvedor e pode levar a problemas de desempenho, porque instanciar e inicializar um gerador de números aleatórios é um processo relativamente caro.
Tanto para melhorar o desempenho quanto para evitar a criação inadvertida de geradores de números aleatórios separados que geram sequências numéricas idênticas, recomendamos que você crie um Random objeto para gerar muitos números aleatórios ao longo do tempo, em vez de criar novos Random objetos para gerar um número aleatório.
No entanto, a Random classe não é thread safe. Se você chamar Random métodos de vários threads, siga as diretrizes discutidas na próxima seção.
Acesso thread-safe
Em vez de instanciar objetos individuais Random , recomendamos que você crie uma única Random instância para gerar todos os números aleatórios necessários para seu aplicativo. No entanto, Random os objetos não são thread safe. Se seu aplicativo chamar Random métodos de vários threads, você deverá usar um objeto de sincronização para garantir que apenas um thread possa acessar o gerador de números aleatórios por vez. Se você não garantir que o objeto seja acessado Random de forma segura para threads, as chamadas para métodos que retornam números aleatórios retornarão 0.
O exemplo a seguir usa a instrução de bloqueio C#, a função de bloqueio F# e a instrução SyncLock do Visual Basic para garantir que um único gerador de números aleatórios seja acessado por 11 threads de maneira segura para threads. Cada thread gera 2 milhões de números aleatórios, conta o número de números aleatórios gerados e calcula sua soma e, em seguida, atualiza os totais de todos os threads quando termina de executar.
using System;
using System.Threading;
public class Example13
{
[ThreadStatic] static double previous = 0.0;
[ThreadStatic] static int perThreadCtr = 0;
[ThreadStatic] static double perThreadTotal = 0.0;
static CancellationTokenSource source;
static CountdownEvent countdown;
static Object randLock, numericLock;
static Random rand;
double totalValue = 0.0;
int totalCount = 0;
public Example13()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
countdown = new CountdownEvent(1);
source = new CancellationTokenSource();
}
public static void Main()
{
Example13 ex = new Example13();
Thread.CurrentThread.Name = "Main";
ex.Execute();
}
private void Execute()
{
CancellationToken token = source.Token;
for (int threads = 1; threads <= 10; threads++)
{
Thread newThread = new Thread(this.GetRandomNumbers);
newThread.Name = threads.ToString();
newThread.Start(token);
}
this.GetRandomNumbers(token);
countdown.Signal();
// Make sure all threads have finished.
countdown.Wait();
source.Dispose();
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
}
private void GetRandomNumbers(Object o)
{
CancellationToken token = (CancellationToken)o;
double result = 0.0;
countdown.AddCount(1);
try
{
for (int ctr = 0; ctr < 2000000; ctr++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock)
{
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0)
{
source.Cancel();
}
else
{
previous = result;
}
perThreadCtr++;
perThreadTotal += result;
}
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name);
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
Console.WriteLine("Random number mean: {0:N4}\n", perThreadTotal / perThreadCtr);
// Update overall totals.
lock (numericLock)
{
totalCount += perThreadCtr;
totalValue += perThreadTotal;
}
}
catch (OperationCanceledException e)
{
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name);
}
finally
{
countdown.Signal();
}
}
}
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
open System
open System.Threading
type Example() =
[<ThreadStatic; DefaultValue>]
static val mutable private previous : float
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadCtr : int
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadTotal : float
static let source = new CancellationTokenSource()
static let countdown = new CountdownEvent(1)
static let randLock = obj ()
static let numericLock = obj ()
static let rand = Random()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.GetRandomNumbers(token: CancellationToken) =
let mutable result = 0.0
countdown.AddCount 1
try
try
for _ = 0 to 1999999 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () ->
result <- rand.NextDouble() )
// Check for corruption of Random instance.
if result = Example.previous && result = 0.0 then
source.Cancel()
else
Example.previous <- result
Example.perThreadCtr <- Example.perThreadCtr + 1
Example.perThreadTotal <- Example.perThreadTotal + result
// Update overall totals.
lock numericLock (fun () ->
// Show result.
printfn "Thread %s finished execution." Thread.CurrentThread.Name
printfn $"Random numbers generated: {Example.perThreadCtr:N0}"
printfn $"Sum of random numbers: {Example.perThreadTotal:N2}"
printfn $"Random number mean: {(Example.perThreadTotal / float Example.perThreadCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + Example.perThreadCtr
totalValue <- totalValue + Example.perThreadTotal)
with :? OperationCanceledException as e ->
printfn "Corruption in Thread %s %s" (e.GetType().Name) Thread.CurrentThread.Name
finally
countdown.Signal() |> ignore
member this.Execute() =
let token = source.Token
for i = 1 to 10 do
let newThread = Thread(fun () -> this.GetRandomNumbers token)
newThread.Name <- string i
newThread.Start()
this.GetRandomNumbers token
countdown.Signal() |> ignore
countdown.Wait()
source.Dispose()
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
Imports System.Threading
Module Example15
<ThreadStatic> Dim previous As Double = 0.0
<ThreadStatic> Dim perThreadCtr As Integer = 0
<ThreadStatic> Dim perThreadTotal As Double = 0.0
Dim source As New CancellationTokenSource()
Dim countdown As New CountdownEvent(1)
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Thread.CurrentThread.Name = "Main"
Dim token As CancellationToken = source.Token
For threads As Integer = 1 To 10
Dim newThread As New Thread(AddressOf GetRandomNumbers)
newThread.Name = threads.ToString()
newThread.Start(token)
Next
GetRandomNumbers(token)
countdown.Signal()
' Make sure all threads have finished.
countdown.Wait()
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
End Sub
Private Sub GetRandomNumbers(o As Object)
Dim token As CancellationToken = CType(o, CancellationToken)
Dim result As Double = 0.0
countdown.AddCount(1)
Try
For ctr As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
perThreadCtr += 1
perThreadTotal += result
Next
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name)
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal)
Console.WriteLine("Random number mean: {0:N4}", perThreadTotal / perThreadCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += perThreadCtr
totalValue += perThreadTotal
End SyncLock
Catch e As OperationCanceledException
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name)
Finally
countdown.Signal()
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Thread 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,491.05
' Random number mean: 0.5002
'
' Thread 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,329.64
' Random number mean: 0.4997
'
' Thread 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,166.89
' Random number mean: 0.5001
'
' Thread 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,628.37
' Random number mean: 0.4998
'
' Thread Main finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,920.89
' Random number mean: 0.5000
'
' Thread 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,370.45
' Random number mean: 0.4997
'
' Thread 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,330.92
' Random number mean: 0.4997
'
' Thread 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,172.79
' Random number mean: 0.5001
'
' Thread 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,079.43
' Random number mean: 0.5000
'
' Thread 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,817.91
' Random number mean: 0.4999
'
' Thread 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,930.63
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 10,998,238.98
' Random number mean: 0.4999
O exemplo garante a segurança dos threads das seguintes maneiras:
- O ThreadStaticAttribute atributo é usado para definir variáveis de thread-local que rastreiam o número total de números aleatórios gerados e sua soma para cada thread.
- Um bloqueio (a
lock
instrução em C#, alock
função em F# e aSyncLock
instrução no Visual Basic) protege o acesso às variáveis para a contagem total e a soma de todos os números aleatórios gerados em todos os threads. - Um semáforo (o CountdownEvent objeto) é usado para garantir que o thread principal seja bloqueado até que todos os outros threads concluam a execução.
- O exemplo verifica se o gerador de números aleatórios foi corrompido, determinando se duas chamadas consecutivas para métodos de geração de números aleatórios retornam 0. Se a corrupção for detectada, o exemplo usará o CancellationTokenSource objeto para sinalizar que todos os threads devem ser cancelados.
- Antes de gerar cada número aleatório, cada thread verifica o CancellationToken estado do objeto. Se o cancelamento for solicitado, o exemplo chamará o CancellationToken.ThrowIfCancellationRequested método para cancelar o thread.
O exemplo a seguir é idêntico ao primeiro, exceto que ele usa um Task objeto e uma expressão lambda em vez de Thread objetos.
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
public class Example15
{
static Object randLock, numericLock;
static Random rand;
static CancellationTokenSource source;
double totalValue = 0.0;
int totalCount = 0;
public Example15()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
source = new CancellationTokenSource();
}
public static async Task Main()
{
Example15 ex = new Example15();
Thread.CurrentThread.Name = "Main";
await ex.Execute();
}
private async Task Execute()
{
List<Task> tasks = new List<Task>();
for (int ctr = 0; ctr <= 10; ctr++)
{
CancellationToken token = source.Token;
int taskNo = ctr;
tasks.Add(Task.Run(() =>
{
double previous = 0.0;
int taskCtr = 0;
double taskTotal = 0.0;
double result = 0.0;
for (int n = 0; n < 2000000; n++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock)
{
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0)
{
source.Cancel();
}
else
{
previous = result;
}
taskCtr++;
taskTotal += result;
}
// Show result.
Console.WriteLine("Task {0} finished execution.", taskNo);
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal);
Console.WriteLine("Random number mean: {0:N4}\n", taskTotal / taskCtr);
// Update overall totals.
lock (numericLock)
{
totalCount += taskCtr;
totalValue += taskTotal;
}
},
token));
}
try
{
await Task.WhenAll(tasks.ToArray());
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
}
catch (AggregateException e)
{
foreach (Exception inner in e.InnerExceptions)
{
TaskCanceledException canc = inner as TaskCanceledException;
if (canc != null)
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id);
else
Console.WriteLine("Exception: {0}", inner.GetType().Name);
}
}
finally
{
source.Dispose();
}
}
}
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
open System
open System.Threading
open System.Threading.Tasks
type Example() =
static let source = new CancellationTokenSource()
static let rand = Random()
static let randLock = obj ()
static let numericLock = obj ()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.Execute() =
use source = source // Dispose of the CancellationTokenSource when we're done with it.
let token = source.Token
let tasks =
[| for i = 0 to 10 do
Task.Run(
(fun () ->
let mutable previous = 0.0
let mutable taskCtr = 0
let mutable taskTotal = 0.0
let mutable result = 0.0
for _ = 1 to 2000000 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () -> result <- rand.NextDouble())
// Check for corruption of Random instance.
if result = previous && result = 0.0 then
source.Cancel()
else
previous <- result
taskCtr <- taskCtr + 1
taskTotal <- taskTotal + result
lock numericLock (fun () ->
// Show result.
printfn "Task %i finished execution." i
printfn $"Random numbers generated: {taskCtr:N0}"
printfn $"Sum of random numbers: {taskTotal:N2}"
printfn $"Random number mean: {(taskTotal / float taskCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + taskCtr
totalValue <- totalValue + taskTotal)),
token
) |]
try
// Run tasks with F# Async.
Task.WhenAll tasks
|> Async.AwaitTask
|> Async.RunSynchronously
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
with
| :? AggregateException as e ->
for inner in e.InnerExceptions do
match inner with
| :? TaskCanceledException as canc ->
if canc <> null then
printfn $"Task #{canc.Task.Id} cancelled"
else
printfn $"Exception: {inner.GetType().Name}"
| _ -> ()
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks
Module Example16
Dim source As New CancellationTokenSource()
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Dim tasks As New List(Of Task)()
For ctr As Integer = 1 To 10
Dim token As CancellationToken = source.Token
Dim taskNo As Integer = ctr
tasks.Add(Task.Run(
Sub()
Dim previous As Double = 0.0
Dim taskCtr As Integer = 0
Dim taskTotal As Double = 0.0
Dim result As Double = 0.0
For n As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
taskCtr += 1
taskTotal += result
Next
' Show result.
Console.WriteLine("Task {0} finished execution.", taskNo)
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal)
Console.WriteLine("Random number mean: {0:N4}", taskTotal / taskCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += taskCtr
totalValue += taskTotal
End SyncLock
End Sub, token))
Next
Try
Task.WaitAll(tasks.ToArray())
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
Catch e As AggregateException
For Each inner As Exception In e.InnerExceptions
Dim canc As TaskCanceledException = TryCast(inner, TaskCanceledException)
If canc IsNot Nothing Then
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id)
Else
Console.WriteLine("Exception: {0}", inner.GetType().Name)
End If
Next
Finally
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Task 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,502.47
' Random number mean: 0.5003
'
' Task 0 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,445.63
' Random number mean: 0.5002
'
' Task 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,556.04
' Random number mean: 0.5003
'
' Task 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,178.87
' Random number mean: 0.5001
'
' Task 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,819.17
' Random number mean: 0.4999
'
' Task 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,190.58
' Random number mean: 0.5001
'
' Task 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,720.21
' Random number mean: 0.4999
'
' Task 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,000.96
' Random number mean: 0.4995
'
' Task 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,499.33
' Random number mean: 0.4997
'
' Task 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,193.25
' Random number mean: 0.5001
'
' Task 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,960.82
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 11,000,067.33
' Random number mean: 0.5000
Ele difere do primeiro exemplo das seguintes maneiras:
- As variáveis para acompanhar o número de números aleatórios gerados e sua soma em cada tarefa são locais para a tarefa, portanto, não há necessidade de usar o ThreadStaticAttribute atributo.
- O método estático Task.WaitAll é usado para garantir que o thread principal não seja concluído antes que todas as tarefas tenham sido concluídas. Não há necessidade do CountdownEvent objeto.
- A exceção resultante do cancelamento da tarefa aparece no Task.WaitAll método. No exemplo anterior, ele é manipulado por cada thread.
Gerar diferentes tipos de números aleatórios
O gerador de números aleatórios fornece métodos que permitem gerar os seguintes tipos de números aleatórios:
Uma série de Byte valores. Você determina o número de valores de byte passando uma matriz inicializada para o número de elementos que você deseja que o método retorne ao NextBytes método. O exemplo a seguir gera 20 bytes.
Random rnd = new Random(); Byte[] bytes = new Byte[20]; rnd.NextBytes(bytes); for (int ctr = 1; ctr <= bytes.Length; ctr++) { Console.Write("{0,3} ", bytes[ctr - 1]); if (ctr % 10 == 0) Console.WriteLine(); } // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
let rnd = Random() let bytes = Array.zeroCreate 20 rnd.NextBytes bytes for i = 1 to bytes.Length do printf "%3i " bytes.[i - 1] if (i % 10 = 0) then printfn "" // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
Module Example9 Public Sub Main() Dim rnd As New Random() Dim bytes(19) As Byte rnd.NextBytes(bytes) For ctr As Integer = 1 To bytes.Length Console.Write("{0,3} ", bytes(ctr - 1)) If ctr Mod 10 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 141 48 189 66 134 212 211 71 161 56 ' 181 166 220 133 9 252 222 57 62 62
Um único inteiro. Você pode escolher se deseja um inteiro de 0 a um valor máximo (Int32.MaxValue - 1) chamando o Next() método, um inteiro entre 0 e um valor específico chamando o Next(Int32) método ou um inteiro dentro de um intervalo de valores chamando o Next(Int32, Int32) método. Nas sobrecargas parametrizadas, o valor máximo especificado é exclusivo; ou seja, o número máximo real gerado é um a menos que o valor especificado.
O exemplo a seguir chama o Next(Int32, Int32) método para gerar 10 números aleatórios entre -10 e 10. Observe que o segundo argumento para o método especifica o limite superior exclusivo do intervalo de valores aleatórios retornados pelo método. Em outras palavras, o maior inteiro que o método pode retornar é um a menos que esse valor.
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,3} ", rnd.Next(-10, 11)); } // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
let rnd = Random() for i = 0 to 9 do printf "%3i " (rnd.Next(-10, 11)) // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
Module Example11 Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,3} ", rnd.Next(-10, 11)) Next End Sub End Module ' The example displays output like the following: ' 2 9 -3 2 4 -7 -3 -8 -8 5
Um único valor de ponto flutuante de 0,0 a menos de 1,0 chamando o NextDouble método. O limite superior exclusivo do número aleatório retornado pelo método é 1, portanto, seu limite superior real é 0,999999999999978. O exemplo a seguir gera 10 números aleatórios de ponto flutuante.
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,-19:R} ", rnd.NextDouble()); if ((ctr + 1) % 3 == 0) Console.WriteLine(); } // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
let rnd = Random() for i = 0 to 9 do printf $"{rnd.NextDouble(),-19:R} " if (i + 1) % 3 = 0 then printfn "" // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
Module Example10 Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,-19:R} ", rnd.NextDouble()) If (ctr + 1) Mod 3 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 0.7911680553998649 0.0903414949264105 0.79776258291572455 ' 0.615568345233597 0.652644504165577 0.84023809378977776 ' 0.099662564741290441 0.91341467383942321 0.96018602045261581 ' 0.74772306473354022
Importante
O Next(Int32, Int32) método permite especificar o intervalo do número aleatório retornado. No entanto, o maxValue
parâmetro, que especifica o número retornado do intervalo superior, é um valor exclusivo, não inclusivo. Isso significa que a chamada Next(0, 100)
de método retorna um valor entre 0 e 99, e não entre 0 e 100.
Você também pode usar a Random classe para tarefas como gerar valores booleanos aleatórios, gerar valores de ponto flutuante aleatórios em um intervalo especificado, gerar inteiros aleatórios de 64 bits e recuperar um elemento exclusivo de uma matriz ou coleção.
Substitua seu próprio algoritmo
Você pode implementar seu próprio gerador de números aleatórios herdando da Random classe e fornecendo seu algoritmo de geração de números aleatórios. Para fornecer seu próprio algoritmo, você deve substituir o Sample método, que implementa o algoritmo de geração de números aleatórios. Você também deve substituir os Next()métodos , Next(Int32, Int32)e para garantir que eles chamem NextBytes seu método substituído Sample . Você não precisa substituir os Next(Int32) métodos e NextDouble .
Para obter um exemplo que deriva Random da classe e modifica seu gerador de números pseudoaleatórios padrão, consulte a Sample página de referência.
Recuperar a mesma sequência de valores aleatórios
Às vezes, você deseja gerar a mesma sequência de números aleatórios em cenários de teste de software e no jogo. O teste com a mesma sequência de números aleatórios permite detectar regressões e confirmar correções de bugs. Usar a mesma sequência de números aleatórios em jogos permite que você repita jogos anteriores.
Você pode gerar a mesma sequência de números aleatórios fornecendo o mesmo valor de semente para o Random(Int32) construtor. O valor de semente fornece um valor inicial para o algoritmo de geração de números pseudoaleatórios. O exemplo a seguir usa 100100 como um valor de propagação arbitrário para instanciar o Random objeto, exibe 20 valores de ponto flutuante aleatórios e persiste o valor de propagação. Em seguida, restaura o valor de semente, instancia um novo gerador de números aleatórios e exibe os mesmos 20 valores de ponto flutuante aleatórios. Observe que o exemplo pode produzir sequências diferentes de números aleatórios se executado em versões diferentes do .NET.
using System;
using System.IO;
public class Example12
{
public static void Main()
{
int seed = 100100;
ShowRandomNumbers(seed);
Console.WriteLine();
PersistSeed(seed);
DisplayNewRandomNumbers();
}
private static void ShowRandomNumbers(int seed)
{
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
private static void PersistSeed(int seed)
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Create);
BinaryWriter bin = new BinaryWriter(fs);
bin.Write(seed);
bin.Close();
}
private static void DisplayNewRandomNumbers()
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Open);
BinaryReader bin = new BinaryReader(fs);
int seed = bin.ReadInt32();
bin.Close();
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
}
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
open System
open System.IO
let showRandomNumbers seed =
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let persistSeed (seed: int) =
use bin = new BinaryWriter(new FileStream(@".\seed.dat", FileMode.Create))
bin.Write seed
let displayNewRandomNumbers () =
use bin = new BinaryReader(new FileStream(@".\seed.dat", FileMode.Open))
let seed = bin.ReadInt32()
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let seed = 100100
showRandomNumbers seed
printfn ""
persistSeed seed
displayNewRandomNumbers ()
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
Imports System.IO
Module Example14
Public Sub Main()
Dim seed As Integer = 100100
ShowRandomNumbers(seed)
Console.WriteLine()
PersistSeed(seed)
DisplayNewRandomNumbers()
End Sub
Private Sub ShowRandomNumbers(seed As Integer)
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
Private Sub PersistSeed(seed As Integer)
Dim fs As New FileStream(".\seed.dat", FileMode.Create)
Dim bin As New BinaryWriter(fs)
bin.Write(seed)
bin.Close()
End Sub
Private Sub DisplayNewRandomNumbers()
Dim fs As New FileStream(".\seed.dat", FileMode.Open)
Dim bin As New BinaryReader(fs)
Dim seed As Integer = bin.ReadInt32()
bin.Close()
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
End Module
' The example displays output like the following:
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
'
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
Recuperar sequências exclusivas de números aleatórios
Fornecer valores de semente diferentes para instâncias da classe faz com que cada gerador de Random números aleatórios produza uma sequência diferente de valores. Você pode fornecer um valor de semente explicitamente chamando o Random(Int32) construtor ou implicitamente chamando o Random() construtor. A maioria dos desenvolvedores chama o construtor sem parâmetros, que usa o relógio do sistema. O exemplo a seguir usa essa abordagem para instanciar duas Random instâncias. Cada instância exibe uma série de 10 inteiros aleatórios.
using System;
using System.Threading;
public class Example16
{
public static void Main()
{
Console.WriteLine("Instantiating two random number generators...");
Random rnd1 = new Random();
Thread.Sleep(2000);
Random rnd2 = new Random();
Console.WriteLine("\nThe first random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd1.Next());
Console.WriteLine("\nThe second random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd2.Next());
}
}
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
open System
open System.Threading
printfn "Instantiating two random number generators..."
let rnd1 = Random()
Thread.Sleep 2000
let rnd2 = Random()
printfn "\nThe first random number generator:"
for _ = 1 to 10 do
printfn $" {rnd1.Next()}"
printfn "\nThe second random number generator:"
for _ = 1 to 10 do
printfn $" {rnd2.Next()}"
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
Imports System.Threading
Module Example17
Public Sub Main()
Console.WriteLine("Instantiating two random number generators...")
Dim rnd1 As New Random()
Thread.Sleep(2000)
Dim rnd2 As New Random()
Console.WriteLine()
Console.WriteLine("The first random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd1.Next())
Next
Console.WriteLine()
Console.WriteLine("The second random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd2.Next())
Next
End Sub
End Module
' The example displays output like the following:
' Instantiating two random number generators...
'
' The first random number generator:
' 643164361
' 1606571630
' 1725607587
' 2138048432
' 496874898
' 1969147632
' 2034533749
' 1840964542
' 412380298
' 47518930
'
' The second random number generator:
' 1251659083
' 1514185439
' 1465798544
' 517841554
' 1821920222
' 195154223
' 1538948391
' 1548375095
' 546062716
' 897797880
No entanto, devido à sua resolução finita, o relógio do sistema não detecta diferenças de tempo inferiores a aproximadamente 15 milissegundos. Portanto, se seu código chama a Random() sobrecarga no .NET Framework para instanciar dois Random objetos em sucessão, você pode inadvertidamente estar fornecendo os objetos com valores de semente idênticos. (A Random classe no .NET Core não tem essa limitação.) Para ver isso no exemplo anterior, comente a chamada do Thread.Sleep método e compile e execute o exemplo novamente.
Para evitar que isso aconteça, recomendamos que você instancie um único Random objeto em vez de vários. No entanto, como Random não é seguro para threads, você deve usar algum dispositivo de sincronização se acessar uma Random instância de vários threads, para obter mais informações, consulte a seção Segurança de threads . Como alternativa, você pode usar um mecanismo de atraso, como o Sleep método usado no exemplo anterior, para garantir que as instanciações ocorram com mais de 15 milissegundos de diferença.
Recuperar inteiros em um intervalo especificado
Você pode recuperar inteiros em um intervalo especificado chamando o Next(Int32, Int32) método, que permite especificar o limite inferior e superior dos números que você gostaria que o gerador de números aleatórios retornasse. O limite superior é um valor exclusivo, não inclusivo. Ou seja, ele não está incluído no intervalo de valores retornados pelo método. O exemplo a seguir usa esse método para gerar inteiros aleatórios entre -10 e 10. Observe que ele especifica 11, que é um maior do que o valor desejado, como o valor do argumento na chamada de maxValue
método.
Random rnd = new Random();
for (int ctr = 1; ctr <= 15; ctr++)
{
Console.Write("{0,3} ", rnd.Next(-10, 11));
if (ctr % 5 == 0) Console.WriteLine();
}
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
let rnd = Random()
for i = 1 to 15 do
printf "%3i " (rnd.Next(-10, 11))
if i % 5 = 0 then printfn ""
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
Module Example12
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 15
Console.Write("{0,3} ", rnd.Next(-10, 11))
If ctr Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' -2 -5 -1 -2 10
' -3 6 -4 -8 3
' -7 10 5 -2 4
Recuperar inteiros com um número especificado de dígitos
Você pode chamar o Next(Int32, Int32) método para recuperar números com um número especificado de dígitos. Por exemplo, para recuperar números com quatro dígitos (ou seja, números que variam de 1000 a 9999), você chama o Next(Int32, Int32) método com um minValue
valor de 1000 e um maxValue
valor de 10000, como mostra o exemplo a seguir.
Random rnd = new Random();
for (int ctr = 1; ctr <= 50; ctr++)
{
Console.Write("{0,3} ", rnd.Next(1000, 10000));
if (ctr % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
let rnd = Random()
for i = 1 to 50 do
printf "%3i " (rnd.Next(1000, 10000))
if i % 10 = 0 then printfn ""
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Module Example13
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 50
Console.Write("{0,3} ", rnd.Next(1000, 10000))
If ctr Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
' 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
' 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
' 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
' 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Recuperar valores de ponto flutuante em um intervalo especificado
O NextDouble método retorna valores de ponto flutuante aleatórios que variam de 0 a menos de 1. No entanto, muitas vezes você desejará gerar valores aleatórios em algum outro intervalo.
Se o intervalo entre os valores mínimo e máximo desejados for 1, você poderá adicionar a diferença entre o intervalo inicial desejado e 0 ao número retornado pelo NextDouble método. O exemplo a seguir faz isso para gerar 10 números aleatórios entre -1 e 0.
Random rnd = new Random();
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(rnd.NextDouble() - 1);
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
let rnd = Random()
for _ = 1 to 10 do
printfn "%O" (rnd.NextDouble() - 1.0)
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
Module Example6
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 10
Console.WriteLine(rnd.NextDouble() - 1)
Next
End Sub
End Module
' The example displays output like the following:
' -0.930412760437658
' -0.164699016215605
' -0.9851692803135
' -0.43468508843085
' -0.177202483255976
' -0.776813320245972
' -0.0713201854710096
' -0.0912875561468711
' -0.540621722368813
' -0.232211863730201
Para gerar números aleatórios de ponto flutuante cujo limite inferior é 0, mas o limite superior é maior que 1 (ou, no caso de números negativos, cujo limite inferior é menor que -1 e limite superior é 0), multiplique o número aleatório pelo limite diferente de zero. O exemplo a seguir faz isso para gerar 20 milhões de números aleatórios de ponto flutuante que variam de 0 a Int64.MaxValue. Em também exibe a distribuição dos valores aleatórios gerados pelo método.
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
double number;
int[] count = new int[10];
// Generate 20 million integer values between.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
number = rnd.NextDouble() * Int64.MaxValue;
// Categorize random numbers into 10 groups.
count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr] / 20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
// Generate 20 million random integers.
let count =
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) )
|> Array.countBy (fun x -> x / (float ONE_TENTH) |> int ) // Categorize into 10 groups and count them.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example5
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million integer values.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr) / 20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Para gerar números aleatórios de ponto flutuante entre dois valores arbitrários, como o Next(Int32, Int32) método faz para inteiros, use a seguinte fórmula:
Random.NextDouble() * (maxValue - minValue) + minValue
O exemplo a seguir gera 1 milhão de números aleatórios que variam de 10,0 a 11,0 e exibe sua distribuição.
Random rnd = new Random();
int lowerBound = 10;
int upperBound = 11;
int[] range = new int[10];
for (int ctr = 1; ctr <= 1000000; ctr++)
{
Double value = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound;
range[(int)Math.Truncate((value - lowerBound) * 10)]++;
}
for (int ctr = 0; ctr <= 9; ctr++)
{
Double lowerRange = 10 + ctr * .1;
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + .1, range[ctr],
range[ctr] / 1000000.0);
}
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
let rnd = Random()
let lowerBound = 10.0
let upperBound = 11.0
let range =
Array.init 1000000 (fun _ -> rnd.NextDouble() * (upperBound - lowerBound) + lowerBound)
|> Array.countBy (fun x -> Math.Truncate((x - lowerBound) * 10.0) |> int)
|> Array.map snd
for i = 0 to 9 do
let lowerRange = 10.0 + float i * 0.1
printfn $"{lowerRange:N1} to {lowerRange + 0.1:N1}: {range.[i],8:N0} ({float range.[i] / 1000000.0,6:P2})"
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
Module Example7
Public Sub Main()
Dim rnd As New Random()
Dim lowerBound As Integer = 10
Dim upperBound As Integer = 11
Dim range(9) As Integer
For ctr As Integer = 1 To 1000000
Dim value As Double = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound
range(CInt(Math.Truncate((value - lowerBound) * 10))) += 1
Next
For ctr As Integer = 0 To 9
Dim lowerRange As Double = 10 + ctr * 0.1
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + 0.1, range(ctr),
range(ctr) / 1000000.0)
Next
End Sub
End Module
' The example displays output like the following:
' 10.0 to 10.1: 99,929 ( 9.99 %)
' 10.1 to 10.2: 100,189 (10.02 %)
' 10.2 to 10.3: 99,384 ( 9.94 %)
' 10.3 to 10.4: 100,240 (10.02 %)
' 10.4 to 10.5: 99,397 ( 9.94 %)
' 10.5 to 10.6: 100,580 (10.06 %)
' 10.6 to 10.7: 100,293 (10.03 %)
' 10.7 to 10.8: 100,135 (10.01 %)
' 10.8 to 10.9: 99,905 ( 9.99 %)
' 10.9 to 11.0: 99,948 ( 9.99 %)
Gerar valores booleanos aleatórios
A Random classe não fornece métodos que geram Boolean valores. No entanto, você pode definir sua própria classe ou método para fazer isso. O exemplo a seguir define uma classe, BooleanGenerator
, com um único método, NextBoolean
. A BooleanGenerator
classe armazena um Random objeto como uma variável privada. O NextBoolean
método chama o Random.Next(Int32, Int32) método e passa o resultado para o Convert.ToBoolean(Int32) método. Observe que 2 é usado como argumento para especificar o limite superior do número aleatório. Como esse é um valor exclusivo, a chamada de método retorna 0 ou 1.
using System;
public class Example1
{
public static void Main()
{
// Instantiate the Boolean generator.
BooleanGenerator boolGen = new BooleanGenerator();
int totalTrue = 0, totalFalse = 0;
// Generate 1,0000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
bool value = boolGen.NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double)totalFalse) / (totalTrue + totalFalse));
}
}
public class BooleanGenerator
{
Random rnd;
public BooleanGenerator()
{
rnd = new Random();
}
public bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
}
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
open System
type BooleanGenerator() =
let rnd = Random()
member _.NextBoolean() =
rnd.Next(0, 2) = 1
let boolGen = BooleanGenerator()
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = boolGen.NextBoolean()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
Module Example2
Public Sub Main()
' Instantiate the Boolean generator.
Dim boolGen As New BooleanGenerator()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = boolGen.NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue / (totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse / (totalTrue + totalFalse))
End Sub
End Module
Public Class BooleanGenerator
Dim rnd As Random
Public Sub New()
rnd = New Random()
End Sub
Public Function NextBoolean() As Boolean
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Class
' The example displays the following output:
' Number of true values: 500,004 (50.000 %)
' Number of false values: 499,996 (50.000 %)
Em vez de criar uma classe separada para gerar valores aleatórios Boolean , o exemplo poderia simplesmente ter definido um único método. Nesse caso, no entanto, o Random objeto deve ter sido definido como uma variável de nível de classe para evitar instanciar uma nova Random instância em cada chamada de método. No Visual Basic, a instância Random pode ser definida como uma variável estática no NextBoolean
método. O exemplo a seguir fornece uma implementação.
Random rnd = new Random();
int totalTrue = 0, totalFalse = 0;
// Generate 1,000,000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
bool value = NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double)totalFalse) / (totalTrue + totalFalse));
bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
let rnd = Random()
let nextBool () =
rnd.Next(0, 2) = 1
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = nextBool ()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
Module Example3
Public Sub Main()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue / (totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse / (totalTrue + totalFalse))
End Sub
Public Function NextBoolean() As Boolean
Static rnd As New Random()
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Module
' The example displays the following output:
' Number of true values: 499,777 (49.978 %)
' Number of false values: 500,223 (50.022 %)
Gerar inteiros aleatórios de 64 bits
As sobrecargas do Next método retornam inteiros de 32 bits. No entanto, em alguns casos, convém trabalhar com inteiros de 64 bits. Você pode fazer isso da seguinte maneira:
Chame o NextDouble método para recuperar um valor de ponto flutuante de precisão dupla.
Multiplique esse valor por Int64.MaxValue.
O exemplo a seguir usa essa técnica para gerar 20 milhões de inteiros longos aleatórios e os categoriza em 10 grupos iguais. Em seguida, avalia a distribuição dos números aleatórios contando o número em cada grupo de 0 a Int64.MaxValue. Como mostra a saída do exemplo, os números são distribuídos mais ou menos igualmente através do intervalo de um inteiro longo.
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
long number;
int[] count = new int[10];
// Generate 20 million long integers.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
number = (long)(rnd.NextDouble() * Int64.MaxValue);
// Categorize random numbers.
count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr] / 20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
let count =
// Generate 20 million random long integers.
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) |> int64 )
|> Array.countBy (fun x -> x / ONE_TENTH) // Categorize and count random numbers.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example8
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million long integers.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr) / 20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Uma técnica alternativa que usa manipulação de bits não gera números verdadeiramente aleatórios. Essa técnica chama Next() para gerar dois inteiros, deslocamentos para a esquerda um por 32 bits e OU eles juntos. Esta técnica tem duas limitações:
Como o bit 31 é o bit de sinal, o valor no bit 31 do inteiro longo resultante é sempre 0. Isso pode ser resolvido gerando um 0 ou 1 aleatório, deslocando-o para a esquerda em 31 bits e ORando-o com o inteiro longo aleatório original.
Mais grave, porque a probabilidade de que o valor retornado por Next() será 0, haverá poucos ou nenhum número aleatório no intervalo 0x0-0x00000000FFFFFFFF.
Recuperar bytes em um intervalo especificado
As sobrecargas do Next método permitem que você especifique o intervalo de números aleatórios, mas o NextBytes método não. O exemplo a seguir implementa um NextBytes
método que permite especificar o intervalo dos bytes retornados. Ele define uma Random2
classe que deriva e Random sobrecarrega seu NextBytes
método.
using System;
public class Example3
{
public static void Main()
{
Random2 rnd = new Random2();
Byte[] bytes = new Byte[10000];
int[] total = new int[101];
rnd.NextBytes(bytes, 0, 101);
// Calculate how many of each value we have.
foreach (var value in bytes)
total[value]++;
// Display the results.
for (int ctr = 0; ctr < total.Length; ctr++)
{
Console.Write("{0,3}: {1,-3} ", ctr, total[ctr]);
if ((ctr + 1) % 5 == 0) Console.WriteLine();
}
}
}
public class Random2 : Random
{
public Random2() : base()
{ }
public Random2(int seed) : base(seed)
{ }
public void NextBytes(byte[] bytes, byte minValue, byte maxValue)
{
for (int ctr = bytes.GetLowerBound(0); ctr <= bytes.GetUpperBound(0); ctr++)
bytes[ctr] = (byte)Next(minValue, maxValue);
}
}
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
open System
type Random2() =
inherit Random()
member this.NextBytes(bytes: byte[], minValue: byte, maxValue: byte) =
for i=bytes.GetLowerBound(0) to bytes.GetUpperBound(0) do
bytes.[i] <- this.Next(int minValue, int maxValue) |> byte
let rnd = Random2()
let bytes = Array.zeroCreate 10000
let total = Array.zeroCreate 101
rnd.NextBytes(bytes, 0uy, 101uy)
// Calculate how many of each value we have.
for v in bytes do
total.[int v] <- total.[int v] + 1
// Display the results.
for i = 0 to total.Length - 1 do
printf "%3i: %-3i " i total.[i]
if (i + 1) % 5 = 0 then printfn ""
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
Module Example4
Public Sub Main()
Dim rnd As New Random2()
Dim bytes(9999) As Byte
Dim total(100) As Integer
rnd.NextBytes(bytes, 0, 101)
' Calculate how many of each value we have.
For Each value In bytes
total(value) += 1
Next
' Display the results.
For ctr As Integer = 0 To total.Length - 1
Console.Write("{0,3}: {1,-3} ", ctr, total(ctr))
If (ctr + 1) Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
Public Class Random2 : Inherits Random
Public Sub New()
MyBase.New()
End Sub
Public Sub New(seed As Integer)
MyBase.New(seed)
End Sub
Public Overloads Sub NextBytes(bytes() As Byte,
minValue As Byte, maxValue As Byte)
For ctr As Integer = bytes.GetLowerbound(0) To bytes.GetUpperBound(0)
bytes(ctr) = CByte(MyBase.Next(minValue, maxValue))
Next
End Sub
End Class
' The example displays output like the following:
' 0: 115 1: 119 2: 92 3: 98 4: 92
' 5: 102 6: 103 7: 84 8: 93 9: 116
' 10: 91 11: 98 12: 106 13: 91 14: 92
' 15: 101 16: 100 17: 96 18: 97 19: 100
' 20: 101 21: 106 22: 112 23: 82 24: 85
' 25: 102 26: 107 27: 98 28: 106 29: 102
' 30: 109 31: 108 32: 94 33: 101 34: 107
' 35: 101 36: 86 37: 100 38: 101 39: 102
' 40: 113 41: 95 42: 96 43: 89 44: 99
' 45: 81 46: 89 47: 105 48: 100 49: 85
' 50: 103 51: 103 52: 93 53: 89 54: 91
' 55: 97 56: 105 57: 97 58: 110 59: 86
' 60: 116 61: 94 62: 117 63: 98 64: 110
' 65: 93 66: 102 67: 100 68: 105 69: 83
' 70: 81 71: 97 72: 85 73: 70 74: 98
' 75: 100 76: 110 77: 114 78: 83 79: 90
' 80: 96 81: 112 82: 102 83: 102 84: 99
' 85: 81 86: 100 87: 93 88: 99 89: 118
' 90: 95 91: 124 92: 108 93: 96 94: 104
' 95: 106 96: 99 97: 99 98: 92 99: 99
' 100: 108
O NextBytes(Byte[], Byte, Byte)
método encapsula uma chamada para o Next(Int32, Int32) método e especifica o valor mínimo e um maior que o valor máximo (neste caso, 0 e 101) que queremos retornar na matriz de bytes. Como temos certeza de que os valores inteiros retornados pelo Next método estão dentro do intervalo do tipo de Byte dados, podemos convertê-los com segurança (em C# e F#) ou convertê-los (no Visual Basic) de inteiros em bytes.
Recuperar um elemento de uma matriz ou coleção aleatoriamente
Números aleatórios geralmente servem como índices para recuperar valores de matrizes ou coleções. Para recuperar um valor de índice aleatório, você pode chamar o Next(Int32, Int32) método e usar o limite inferior da matriz como o valor de seu minValue
argumento e um maior que o limite superior da matriz como o valor de seu maxValue
argumento. Para uma matriz baseada em zero, isso é equivalente à sua Length propriedade ou um valor maior que o valor retornado pelo Array.GetUpperBound método. O exemplo a seguir recupera aleatoriamente o nome de uma cidade nos Estados Unidos de uma matriz de cidades.
String[] cities = { "Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington" };
Random rnd = new Random();
int index = rnd.Next(0, cities.Length);
Console.WriteLine("Today's city of the day: {0}",
cities[index]);
// The example displays output like the following:
// Today's city of the day: Honolulu
let cities =
[| "Atlanta"; "Boston"; "Chicago"; "Detroit";
"Fort Wayne"; "Greensboro"; "Honolulu"; "Indianapolis";
"Jersey City"; "Kansas City"; "Los Angeles";
"Milwaukee"; "New York"; "Omaha"; "Philadelphia";
"Raleigh"; "San Francisco"; "Tulsa"; "Washington" |]
let rnd = Random()
let index = rnd.Next(0,cities.Length)
printfn "Today's city of the day: %s" cities.[index]
// The example displays output like the following:
// Today's city of the day: Honolulu
Module Example1
Public Sub Main()
Dim cities() As String = {"Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington"}
Dim rnd As New Random()
Dim index As Integer = rnd.Next(0, cities.Length)
Console.WriteLine("Today's city of the day: {0}",
cities(index))
End Sub
End Module
' The example displays output like the following:
' Today's city of the day: Honolulu
Recuperar um elemento exclusivo de uma matriz ou coleção
Um gerador de números aleatórios sempre pode retornar valores duplicados. À medida que o intervalo de números se torna menor ou o número de valores gerados se torna maior, a probabilidade de duplicatas aumenta. Se os valores aleatórios devem ser exclusivos, mais números são gerados para compensar duplicatas, resultando em um desempenho cada vez mais ruim.
Há uma série de técnicas para lidar com esse cenário. Uma solução comum é criar uma matriz ou coleção que contenha os valores a serem recuperados e uma matriz paralela que contenha números aleatórios de ponto flutuante. A segunda matriz é preenchida com números aleatórios no momento em que a primeira matriz é criada, e o Array.Sort(Array, Array) método é usado para classificar a primeira matriz usando os valores na matriz paralela.
Por exemplo, se você estiver desenvolvendo um jogo Solitaire, você deseja garantir que cada carta seja usada apenas uma vez. Em vez de gerar números aleatórios para recuperar uma carta e rastrear se essa carta já foi distribuída, você pode criar uma matriz paralela de números aleatórios que podem ser usados para classificar o baralho. Depois que o baralho é classificado, seu aplicativo pode manter um ponteiro para indicar o índice da próxima carta no baralho.
O exemplo a seguir ilustra esta abordagem. Ele define uma Card
classe que representa uma carta de baralho e uma Dealer
classe que lida com um baralho de cartas embaralhadas. O Dealer
construtor de classe preenche duas matrizes: uma deck
matriz que tem escopo de classe e que representa todas as cartas no baralho; e uma matriz local order
que tem o mesmo número de elementos que a deck
matriz e é preenchida com valores gerados Double aleatoriamente. O Array.Sort(Array, Array) método é então chamado para classificar a deck
matriz com base nos valores na order
matriz.
using System;
// A class that represents an individual card in a playing deck.
public class Card
{
public Suit Suit;
public FaceValue FaceValue;
public override String ToString()
{
return String.Format("{0:F} of {1:F}", this.FaceValue, this.Suit);
}
}
public enum Suit { Hearts, Diamonds, Spades, Clubs };
public enum FaceValue
{
Ace = 1, Two, Three, Four, Five, Six,
Seven, Eight, Nine, Ten, Jack, Queen,
King
};
public class Dealer
{
Random rnd;
// A deck of cards, without Jokers.
Card[] deck = new Card[52];
// Parallel array for sorting cards.
Double[] order = new Double[52];
// A pointer to the next card to deal.
int ptr = 0;
// A flag to indicate the deck is used.
bool mustReshuffle = false;
public Dealer()
{
rnd = new Random();
// Initialize the deck.
int deckCtr = 0;
foreach (var suit in Enum.GetValues(typeof(Suit)))
{
foreach (var faceValue in Enum.GetValues(typeof(FaceValue)))
{
Card card = new Card();
card.Suit = (Suit)suit;
card.FaceValue = (FaceValue)faceValue;
deck[deckCtr] = card;
deckCtr++;
}
}
for (int ctr = 0; ctr < order.Length; ctr++)
order[ctr] = rnd.NextDouble();
Array.Sort(order, deck);
}
public Card[] Deal(int numberToDeal)
{
if (mustReshuffle)
{
Console.WriteLine("There are no cards left in the deck");
return null;
}
Card[] cardsDealt = new Card[numberToDeal];
for (int ctr = 0; ctr < numberToDeal; ctr++)
{
cardsDealt[ctr] = deck[ptr];
ptr++;
if (ptr == deck.Length)
mustReshuffle = true;
if (mustReshuffle & ctr < numberToDeal - 1)
{
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1);
return cardsDealt;
}
}
return cardsDealt;
}
}
public class Example17
{
public static void Main()
{
Dealer dealer = new Dealer();
ShowCards(dealer.Deal(20));
}
private static void ShowCards(Card[] cards)
{
foreach (var card in cards)
if (card != null)
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit);
}
}
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
open System
type Suit =
| Clubs
| Diamonds
| Hearts
| Spades
type Face =
| Ace | Two | Three
| Four | Five | Six
| Seven | Eight | Nine
| Ten | Jack | Queen | King
type Card = { Face: Face; Suit: Suit }
let suits = [ Clubs; Diamonds; Hearts; Spades ]
let faces = [ Ace; Two; Three; Four; Five; Six; Seven; Eight; Nine; Ten; Jack; Queen; King ]
type Dealer() =
let rnd = Random()
let mutable pos = 0
// Parallel array for sorting cards.
let order = Array.init (suits.Length * faces.Length) (fun _ -> rnd.NextDouble() )
// A deck of cards, without Jokers.
let deck = [|
for s in suits do
for f in faces do
{ Face = f; Suit = s } |]
// Shuffle the deck.
do Array.Sort(order, deck)
// Deal a number of cards from the deck, return None if failed
member _.Deal(numberToDeal) : Card [] option =
if numberToDeal = 0 || pos = deck.Length then
printfn "There are no cards left in the deck"
None
else
let cards = deck.[pos .. numberToDeal + pos - 1]
if numberToDeal > deck.Length - pos then
printfn "Can only deal the %i cards remaining on the deck." (deck.Length - pos)
pos <- min (pos + numberToDeal) deck.Length
Some cards
let showCards cards =
for card in cards do
printfn $"{card.Face} of {card.Suit}"
let dealer = Dealer()
dealer.Deal 20
|> Option.iter showCards
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
' A class that represents an individual card in a playing deck.
Public Class Card
Public Suit As Suit
Public FaceValue As FaceValue
Public Overrides Function ToString() As String
Return String.Format("{0:F} of {1:F}", Me.FaceValue, Me.Suit)
End Function
End Class
Public Enum Suit As Integer
Hearts = 0
Diamonds = 1
Spades = 2
Clubs = 3
End Enum
Public Enum FaceValue As Integer
Ace = 1
Two = 2
Three = 3
Four = 4
Five = 5
Six = 6
Seven = 7
Eight = 8
Nine = 9
Ten = 10
Jack = 11
Queen = 12
King = 13
End Enum
Public Class Dealer
Dim rnd As Random
' A deck of cards, without Jokers.
Dim deck(51) As Card
' Parallel array for sorting cards.
Dim order(51) As Double
' A pointer to the next card to deal.
Dim ptr As Integer = 0
' A flag to indicate the deck is used.
Dim mustReshuffle As Boolean
Public Sub New()
rnd = New Random()
' Initialize the deck.
Dim deckCtr As Integer = 0
For Each Suit In [Enum].GetValues(GetType(Suit))
For Each faceValue In [Enum].GetValues(GetType(FaceValue))
Dim card As New Card()
card.Suit = CType(Suit, Suit)
card.FaceValue = CType(faceValue, FaceValue)
deck(deckCtr) = card
deckCtr += 1
Next
Next
For ctr As Integer = 0 To order.Length - 1
order(ctr) = rnd.NextDouble()
Next
Array.Sort(order, deck)
End Sub
Public Function Deal(numberToDeal As Integer) As Card()
If mustReshuffle Then
Console.WriteLine("There are no cards left in the deck")
Return Nothing
End If
Dim cardsDealt(numberToDeal - 1) As Card
For ctr As Integer = 0 To numberToDeal - 1
cardsDealt(ctr) = deck(ptr)
ptr += 1
If ptr = deck.Length Then
mustReshuffle = True
End If
If mustReshuffle And ctr < numberToDeal - 1
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1)
Return cardsDealt
End If
Next
Return cardsDealt
End Function
End Class
Public Module Example
Public Sub Main()
Dim dealer As New Dealer()
ShowCards(dealer.Deal(20))
End Sub
Private Sub ShowCards(cards() As Card)
For Each card In cards
If card IsNot Nothing Then _
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit)
Next
End Sub
End Module
' The example displays output like the following:
' Six of Diamonds
' King of Clubs
' Eight of Clubs
' Seven of Clubs
' Queen of Clubs
' King of Hearts
' Three of Spades
' Ace of Clubs
' Four of Hearts
' Three of Diamonds
' Nine of Diamonds
' Two of Hearts
' Ace of Hearts
' Three of Hearts
' Four of Spades
' Eight of Hearts
' Queen of Diamonds
' Two of Clubs
' Four of Diamonds
' Jack of Hearts