Migrando para a biblioteca OpenAI Python API 1.x

A OpenAI lançou uma nova versão da biblioteca OpenAI Python API. Este guia é complementar ao guia de migração do OpenAI e ajudará a atualizá-lo sobre as alterações específicas do Azure OpenAI.

Atualizações

  • Esta é uma nova versão da biblioteca OpenAI Python API.
  • A partir de 6 de novembro de 2023 pip install openai e pip install openai --upgrade será instalada version 1.x a biblioteca OpenAI Python.
  • Atualizar de version 0.28.1 para version 1.x é uma mudança de quebra, você precisará testar e atualizar seu código.
  • Repetição automática com backoff se houver um erro
  • Tipos adequados (para mypy/pyright/editores)
  • Agora você pode instanciar um cliente, em vez de usar um padrão global.
  • Alternar para instanciação explícita do cliente
  • Alterações de nome

Problemas conhecidos

Teste antes de migrar

Importante

A migração automática do seu código usando openai migrate não é suportada com o Azure OpenAI.

Como esta é uma nova versão da biblioteca com alterações de quebra, você deve testar seu código extensivamente em relação à nova versão antes de migrar qualquer aplicativo de produção para confiar na versão 1.x. Você também deve revisar seu código e processos internos para se certificar de que está seguindo as práticas recomendadas e fixando seu código de produção apenas em versões que você testou completamente.

Para facilitar o processo de migração, estamos atualizando exemplos de código existentes em nossos documentos para Python para uma experiência com guias:

pip install openai --upgrade

Isso fornece contexto para o que mudou e permite que você teste a nova biblioteca em paralelo, continuando a fornecer suporte para a versão 0.28.1. Se você atualizar para 1.x e perceber que precisa reverter temporariamente para a versão anterior, você sempre pip uninstall openai pode e, em seguida, reinstalar direcionado para 0.28.1 com pip install openai==0.28.1.

Conclusão do chat

Você precisa definir a model variável para o nome de implantação escolhido quando implantou os modelos GPT-3.5-Turbo ou GPT-4. Inserir o nome do modelo resulta em um erro, a menos que você escolha um nome de implantação idêntico ao nome do modelo subjacente.

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), 
  api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version="2024-02-01"
)

response = client.chat.completions.create(
    model="gpt-35-turbo", # model = "deployment_name"
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
        {"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
        {"role": "user", "content": "Do other Azure AI services support this too?"}
    ]
)

print(response.choices[0].message.content)

Exemplos adicionais podem ser encontrados em nosso artigo detalhado Conclusão do bate-papo.

Conclusões

import os
from openai import AzureOpenAI
    
client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
    api_version="2024-02-01",
    azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
    
deployment_name='REPLACE_WITH_YOUR_DEPLOYMENT_NAME' #This will correspond to the custom name you chose for your deployment when you deployed a model. 
    
# Send a completion call to generate an answer
print('Sending a test completion job')
start_phrase = 'Write a tagline for an ice cream shop. '
response = client.completions.create(model=deployment_name, prompt=start_phrase, max_tokens=10) # model = "deployment_name"
print(response.choices[0].text)

Incorporações

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  api_key = os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version = "2024-02-01",
  azure_endpoint =os.getenv("AZURE_OPENAI_ENDPOINT") 
)

response = client.embeddings.create(
    input = "Your text string goes here",
    model= "text-embedding-ada-002"  # model = "deployment_name".
)

print(response.model_dump_json(indent=2))

Exemplos adicionais, incluindo como lidar com a pesquisa semântica de texto sem embeddings_utils.py podem ser encontrados em nosso tutorial de incorporações.

Assíncrono

O OpenAI não suporta a chamada de métodos assíncronos no cliente de nível de módulo, em vez disso, você deve instanciar um cliente assíncrono.

import os
import asyncio
from openai import AsyncAzureOpenAI

async def main():
    client = AsyncAzureOpenAI(  
      api_key = os.getenv("AZURE_OPENAI_API_KEY"),  
      api_version = "2024-02-01",
      azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
    )
    response = await client.chat.completions.create(model="gpt-35-turbo", messages=[{"role": "user", "content": "Hello world"}]) # model = model deployment name

    print(response.model_dump_json(indent=2))

asyncio.run(main())

Autenticação

from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from openai import AzureOpenAI

token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")

api_version = "2024-02-01"
endpoint = "https://my-resource.openai.azure.com"

client = AzureOpenAI(
    api_version=api_version,
    azure_endpoint=endpoint,
    azure_ad_token_provider=token_provider,
)

completion = client.chat.completions.create(
    model="deployment-name",  # model = "deployment_name"
    messages=[
        {
            "role": "user",
            "content": "How do I output all files in a directory using Python?",
        },
    ],
)
print(completion.model_dump_json(indent=2))

Utilize os seus dados

Para obter as etapas de configuração completas necessárias para que esses exemplos de código funcionem, consulte o guia de início rápido use your data.

import os
import openai
import dotenv

dotenv.load_dotenv()

endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT")
api_key = os.environ.get("AZURE_OPENAI_API_KEY")
deployment = os.environ.get("AZURE_OPEN_AI_DEPLOYMENT_ID")

client = openai.AzureOpenAI(
    base_url=f"{endpoint}/openai/deployments/{deployment}/extensions",
    api_key=api_key,
    api_version="2023-08-01-preview",
)

completion = client.chat.completions.create(
    model=deployment, # model = "deployment_name"
    messages=[
        {
            "role": "user",
            "content": "How is Azure machine learning different than Azure OpenAI?",
        },
    ],
    extra_body={
        "dataSources": [
            {
                "type": "AzureCognitiveSearch",
                "parameters": {
                    "endpoint": os.environ["AZURE_AI_SEARCH_ENDPOINT"],
                    "key": os.environ["AZURE_AI_SEARCH_API_KEY"],
                    "indexName": os.environ["AZURE_AI_SEARCH_INDEX"]
                }
            }
        ]
    }
)

print(completion.model_dump_json(indent=2))

Correção DALL-E

import time
import json
import httpx
import openai


class CustomHTTPTransport(httpx.HTTPTransport):
    def handle_request(
        self,
        request: httpx.Request,
    ) -> httpx.Response:
        if "images/generations" in request.url.path and request.url.params[
            "api-version"
        ] in [
            "2023-06-01-preview",
            "2023-07-01-preview",
            "2023-08-01-preview",
            "2023-09-01-preview",
            "2023-10-01-preview",
        ]:
            request.url = request.url.copy_with(path="/openai/images/generations:submit")
            response = super().handle_request(request)
            operation_location_url = response.headers["operation-location"]
            request.url = httpx.URL(operation_location_url)
            request.method = "GET"
            response = super().handle_request(request)
            response.read()

            timeout_secs: int = 120
            start_time = time.time()
            while response.json()["status"] not in ["succeeded", "failed"]:
                if time.time() - start_time > timeout_secs:
                    timeout = {"error": {"code": "Timeout", "message": "Operation polling timed out."}}
                    return httpx.Response(
                        status_code=400,
                        headers=response.headers,
                        content=json.dumps(timeout).encode("utf-8"),
                        request=request,
                    )

                time.sleep(int(response.headers.get("retry-after")) or 10)
                response = super().handle_request(request)
                response.read()

            if response.json()["status"] == "failed":
                error_data = response.json()
                return httpx.Response(
                    status_code=400,
                    headers=response.headers,
                    content=json.dumps(error_data).encode("utf-8"),
                    request=request,
                )

            result = response.json()["result"]
            return httpx.Response(
                status_code=200,
                headers=response.headers,
                content=json.dumps(result).encode("utf-8"),
                request=request,
            )
        return super().handle_request(request)


client = openai.AzureOpenAI(
    azure_endpoint="<azure_endpoint>",
    api_key="<api_key>",
    api_version="<api_version>",
    http_client=httpx.Client(
        transport=CustomHTTPTransport(),
    ),
)
image = client.images.generate(prompt="a cute baby seal")

print(image.data[0].url)

Alterações de nome

Nota

Todos os métodos a* foram removidos; O cliente assíncrono deve ser usado em vez disso.

OpenAI Python 0.28.1 OpenAI Python 1.x
openai.api_base openai.base_url
openai.proxy openai.proxies
openai.InvalidRequestError openai.BadRequestError
openai.Audio.transcribe() client.audio.transcriptions.create()
openai.Audio.translate() client.audio.translations.create()
openai.ChatCompletion.create() client.chat.completions.create()
openai.Completion.create() client.completions.create()
openai.Edit.create() client.edits.create()
openai.Embedding.create() client.embeddings.create()
openai.File.create() client.files.create()
openai.File.list() client.files.list()
openai.File.retrieve() client.files.retrieve()
openai.File.download() client.files.retrieve_content()
openai.FineTune.cancel() client.fine_tunes.cancel()
openai.FineTune.list() client.fine_tunes.list()
openai.FineTune.list_events() client.fine_tunes.list_events()
openai.FineTune.stream_events() client.fine_tunes.list_events(stream=True)
openai.FineTune.retrieve() client.fine_tunes.retrieve()
openai.FineTune.delete() client.fine_tunes.delete()
openai.FineTune.create() client.fine_tunes.create()
openai.FineTuningJob.create() client.fine_tuning.jobs.create()
openai.FineTuningJob.cancel() client.fine_tuning.jobs.cancel()
openai.FineTuningJob.delete() client.fine_tuning.jobs.create()
openai.FineTuningJob.retrieve() client.fine_tuning.jobs.retrieve()
openai.FineTuningJob.list() client.fine_tuning.jobs.list()
openai.FineTuningJob.list_events() client.fine_tuning.jobs.list_events()
openai.Image.create() client.images.generate()
openai.Image.create_variation() client.images.create_variation()
openai.Image.create_edit() client.images.edit()
openai.Model.list() client.models.list()
openai.Model.delete() client.models.delete()
openai.Model.retrieve() client.models.retrieve()
openai.Moderation.create() client.moderations.create()
openai.api_resources openai.resources

Removido

  • openai.api_key_path
  • openai.app_info
  • openai.debug
  • openai.log
  • openai.OpenAIError
  • openai.Audio.transcribe_raw()
  • openai.Audio.translate_raw()
  • openai.ErrorObject
  • openai.Customer
  • openai.api_version
  • openai.verify_ssl_certs
  • openai.api_type
  • openai.enable_telemetry
  • openai.ca_bundle_path
  • openai.requestssession (OpenAI agora usa httpx)
  • openai.aiosession (OpenAI agora usa httpx)
  • openai.Deployment (Usado anteriormente para o Azure OpenAI)
  • openai.Engine
  • openai.File.find_matching_files()