Cláusula UNPIVOT
Aplica-se a: Databricks SQL Databricks Runtime 12.2 LTS e superior.
Transforma as linhas do table_reference girando grupos de colunas em linhas e recolhendo as colunas listadas: Uma primeira nova coluna contém os nomes originais do grupo de colunas (ou seu alias) como valores, esta coluna é seguida para um grupo de colunas com os valores de cada grupo de colunas.
table_reference UNPIVOT [ { INCLUDE NULLS | EXCLUDE NULLS } ]
{ single_value | multi_value }
( value_column
FOR unpivot_column IN ( { column_name [ column_alias ] } [, ...] ) )
[ table_alias ]
single_value
( value_column
FOR unpivot_column IN ( { column_name [ column_alias ] } [, ...] ) )
multi_value
( ( value_column [, ...] )
FOR unpivot_column IN ( { ( column_name [, ...] ) [ column_alias ] } [, ...] ) )
-
Identifica o assunto da
UNPIVOT
operação. INCLUDE NULLS
ouEXCLUDE NULLS
Se, ou não, filtrar linhas com
NULL
novalue_column
. A predefinição éEXCLUDE NULLS
.-
Um alias de coluna não qualificado. Esta coluna conterá os valores. O tipo de ech
value_column
é o tipo menos comum dos tipos de coluna correspondentescolumn_name
. -
Um alias de coluna não qualificado. Esta coluna conterá os nomes dos s rotativos
column_name
ou dos seuscolumn_alias
s. O tipo deunpivot_column
éSTRING
.No caso de um valor
UNPIVOT
múltiplo o valor será a concatenação dos'_'
s separadoscolumn_name
, se nãocolumn_alias
houver . -
Identifica uma coluna em relação que não será pivotada. O nome pode ser qualificado. Todos os
column_name
s devem compartilhar um tipo menos comum. -
Um nome opcional usado em
unpivot_column
. -
Opcionalmente, especifica um rótulo para a tabela resultante. Se o inclui
column_identifier
s, otable_alias
seu número deve corresponder ao número de colunas produzidas porUNPIVOT
.
Uma tabela temporária do seguinte formulário:
- Todas as colunas do
table_reference
exceto aquelas nomeadas comocolumn_name
s. - O
unpivot_column
do tipoSTRING
. - O
value_column
s dos tipos menos comuns de seus s correspondentescolumn_name
.
- A single column UNPIVOT
> CREATE OR REPLACE TEMPORARY VIEW sales(location, year, q1, q2, q3, q4) AS
VALUES ('Toronto' , 2020, 100 , 80 , 70, 150),
('San Francisco', 2020, NULL, 20 , 50, 60),
('Toronto' , 2021, 110 , 90 , 80, 170),
('San Francisco', 2021, 70 , 120, 85, 105);
> SELECT *
FROM sales UNPIVOT INCLUDE NULLS
(sales FOR quarter IN (q1 AS `Jan-Mar`,
q2 AS `Apr-Jun`,
q3 AS `Jul-Sep`,
sales.q4 AS `Oct-Dec`));
location year quarter sales
—------------ —--- —------ —-----
Toronto 2020 Jan-Mar 100
Toronto 2020 Apr-Jun 80
Toronto 2020 Jul-Sep 70
Toronto 2020 Oct-Dec 150
San Francisco 2020 Jan-Mar null
San Francisco 2020 Apr-Jun 20
San Francisco 2020 Jul-Sep 50
San Francisco 2020 Oct-Dec 60
Toronto 2021 Jan-Mar 110
Toronto 2021 Apr-Jun 90
Toronto 2021 Jul-Sep 80
Toronto 2021 Oct-Dec 170
San Francisco 2021 Jan-Mar 70
San Francisco 2021 Apr-Jun 120
San Francisco 2021 Jul-Sep 85
San Francisco 2021 Oct-Dec 105
-- This is equivalent to:
> SELECT location, year,
inline(arrays_zip(array('Jan-Mar', 'Apr-Jun', 'Jul-Sep', 'Oct-Dec'),
array(q1 , q2 , q3 , q4)))
AS (quarter, sales)
FROM sales;
- A multi column UNPIVOT
> CREATE OR REPLACE TEMPORARY VIEW oncall
(year, week, area , name1 , email1 , phone1 , name2 , email2 , phone2) AS
VALUES (2022, 1 , 'frontend', 'Freddy', 'fred@alwaysup.org' , 15551234567, 'Fanny' , 'fanny@lwaysup.org' , 15552345678),
(2022, 1 , 'backend' , 'Boris' , 'boris@alwaysup.org', 15553456789, 'Boomer', 'boomer@lwaysup.org', 15554567890),
(2022, 2 , 'frontend', 'Franky', 'frank@lwaysup.org' , 15555678901, 'Fin' , 'fin@alwaysup.org' , 15556789012),
(2022, 2 , 'backend' , 'Bonny' , 'bonny@alwaysup.org', 15557890123, 'Bea' , 'bea@alwaysup.org' , 15558901234);
> SELECT *
FROM oncall UNPIVOT ((name, email, phone) FOR precedence IN ((name1, email1, phone1) AS primary,
(name2, email2, phone2) AS secondary));
year week area precedence name email phone
---- ---- -------- ---------- ------ ------------------ -----------
2022 1 frontend primary Freddy fred@alwaysup.org 15551234567
2022 1 frontend secondary Fanny fanny@lwaysup.org 15552345678
2022 1 backend primary Boris boris@alwaysup.org 15553456789
2022 1 backend secondary Boomer boomer@lwaysup.org 15554567890
2022 2 frontend primary Franky frank@lwaysup.org 15555678901
2022 2 frontend secondary Fin fin@alwaysup.org 15556789012
2022 2 backend primary Bonny bonny@alwaysup.org 15557890123
2022 2 backend secondary Bea bea@alwaysup.org 15558901234
-- This is equivalent to:
> SELECT year, week, area,
inline(arrays_zip(array('primary', 'secondary'),
array(name1, name2),
array(email1, email2),
array(phone1, phone2)))
AS (precedence, name, email, phone)
FROM oncall;