Intelligent Insights med hjälp av AI för att övervaka och felsöka databasprestanda (förhandsversion)
Gäller för:Azure SQL DatabaseAzure SQL Managed Instance
Intelligent Insights i Azure SQL Database och Azure SQL Managed Instance låter dig veta vad som händer med databasens prestanda.
Intelligent Insights använder artificiell intelligens för att kontinuerligt övervaka databasanvändningen och identifiera störande händelser som orsakar svag prestanda. När det har identifierats utförs en detaljerad analys som genererar en Intelligent Insights-resurslogg med namnet SQLInsights (inte relaterat till Azure Monitor SQL Insights (förhandsversion)) med en intelligent utvärdering av problemen. Den här utvärderingen består av en rotorsaksanalys av databasprestandaproblemet och, om möjligt, rekommendationer för prestandaförbättringar.
Vad kan Intelligent Insights göra för dig?
Intelligent Insights är en unik funktion i inbyggd Azure-intelligens som ger följande värde:
- Proaktiv övervakning
- Skräddarsydda prestandainsikter
- Tidig identifiering av försämrad databasprestanda
- Rotorsaksanalys av identifierade problem
- Rekommendationer för prestandaförbättring
- Skala ut kapacitet på hundratusentals databaser
- Positiv inverkan på DevOps-resurser och den totala ägandekostnaden
Hur fungerar Intelligent Insights
Intelligent Insights analyserar databasprestanda genom att jämföra databasarbetsbelastningen från den senaste timmen med den senaste sjudagars baslinjearbetsbelastningen. Databasarbetsbelastningen består av frågor som bedöms vara de viktigaste för databasens prestanda, till exempel de mest upprepade och största frågorna. Eftersom varje databas är unik baserat på dess struktur, data, användning och program är varje arbetsbelastningsbaslinje som genereras specifik och unik för den arbetsbelastningen. Intelligent Insights, oberoende av arbetsbelastningsbaslinjen, övervakar även absoluta driftströsklar och identifierar problem med för höga väntetider, kritiska undantag och problem med frågeparameteriseringar som kan påverka prestanda.
När ett prestandaförsämringsproblem har identifierats från flera observerade mått med hjälp av artificiell intelligens utförs analysen. En diagnostiklogg genereras med en intelligent insikt om vad som händer med databasen. Intelligent Insights gör det enkelt att spåra problemet med databasprestanda från det första utseendet tills lösningen har lösts. Varje identifierat problem spåras genom livscykeln från den första problemidentifieringen och verifieringen av prestandaförbättringar till dess slutförande.
De mått som används för att mäta och identifiera problem med databasprestanda baseras på frågevaraktighet, tidsgränsbegäranden, för höga väntetider och felbegäranden. Mer information om mått finns i Identifieringsmått.
Identifierade försämringar av databasprestanda registreras i Intelligent Insights SQLInsights-loggen med intelligenta poster som består av följande egenskaper:
Property | Details |
---|---|
Databasinformation | Metadata om en databas där en insikt har identifierats, till exempel en resurs-URI. |
Observerat tidsintervall | Start- och sluttid för perioden för den identifierade insikten. |
Mått som påverkas | Mått som gjorde att en insikt genererades:
|
Effektvärde | Värdet för ett mätvärde som mäts. |
Frågor och felkoder som påverkas | Fråga hash eller felkod. Dessa kan användas för att enkelt korrelera med berörda frågor. Mått som består av antingen ökning av frågevaraktighet, väntetid, antal tidsgränser eller felkoder tillhandahålls. |
Upptäckter | Identifiering som identifierades i databasen under tidpunkten för en händelse. Det finns 15 identifieringsmönster. Mer information finns i Felsöka problem med databasprestanda med Intelligent Insights. |
Rotorsaksanalys | Rotorsaksanalys av problemet som identifierats i ett läsbart format för människor. Vissa insikter kan innehålla en rekommendation om prestandaförbättring där det är möjligt. |
Intelligent Insights lyser med att identifiera och felsöka problem med databasprestanda. Information om hur du använder Intelligent Insights för att felsöka problem med databasprestanda finns i Felsöka prestandaproblem med Intelligent Insights.
Intelligent Insights-alternativ
Tillgängliga Intelligent Insights-alternativ är:
Intelligent Insights-alternativ | Stöd för Azure SQL Database | Stöd för Azure SQL Managed Instance |
---|---|---|
Konfigurera Intelligent Insights – Konfigurera Intelligent Insights-analys för dina databaser. | Ja | Ja |
Strömma insikter till Azure SQL Analytics – Strömma insikter till Azure SQL Analytics. | Ja | Ja |
Strömma insikter till Azure Event Hubs – Strömma insikter till Event Hubs för ytterligare anpassade integreringar. | Ja | Ja |
Strömma insikter till Azure Storage – Strömma insikter till Azure Storage för ytterligare analys och långsiktig arkivering. | Ja | Ja |
Kommentar
Intelligenta insikter är en förhandsversionsfunktion som inte är tillgänglig i följande regioner: Europa, västra, Europa, norra, USA, västra 1 och USA, östra 1.
Konfigurera export av Intelligent Insights-loggen
Utdata från Intelligent Insights kan strömmas till ett av flera mål för analys:
- Utdata som strömmas till en Log Analytics-arbetsyta kan användas med Azure SQL Analytics för att visa insikter via användargränssnittet i Azure-portalen. Det här är den integrerade Azure-lösningen och det vanligaste sättet att visa insikter.
- Utdata som strömmas till Azure Event Hubs kan användas för utveckling av anpassade scenarier för övervakning och aviseringar
- Utdata som strömmas till Azure Storage kan användas för anpassad programutveckling för anpassad rapportering, långsiktig dataarkivering och så vidare.
Integrering av Azure SQL Analytics, Azure Event Hubs, Azure Storage eller produkter från tredje part för förbrukning utförs genom att först aktivera Intelligent Insights-loggning ("SQLInsights"-loggen ) på sidan Diagnostikinställningar i en databas och sedan konfigurera Intelligent Insights-loggdata som ska strömmas till något av dessa mål.
Mer information om hur du aktiverar Intelligent Insights-loggning och för att konfigurera mått- och resursloggdata som ska strömmas till en förbrukande produkt finns i Mått och diagnostikloggning.
Konfigurera med Azure SQL Analytics
Azure SQL Analytics-lösningen tillhandahåller grafiska användargränssnitt, rapporterings- och aviseringsfunktioner för databasprestanda med hjälp av Intelligent Insights-resursloggdata.
Lägg till Azure SQL Analytics på azure-portalens instrumentpanel från Marketplace och för att skapa en arbetsyta kan du läsa konfigurera Azure SQL Analytics
Om du vill använda Intelligent Insights med Azure SQL Analytics konfigurerar du Intelligent Insights-loggdata så att de strömmas till azure SQL Analytics-arbetsytan som du skapade i föregående steg. Mer information finns i Loggning av mått och diagnostik.
I följande exempel visas en Intelligent Insights som visas via Azure SQL Analytics:
Konfigurera med Event Hubs
Om du vill använda Intelligent Insights med Event Hubs konfigurerar du Intelligent Insights-loggdata som ska strömmas till Event Hubs, se Loggning av mått och diagnostik och Stream Azure-diagnostikloggar till Event Hubs.
Information om hur du använder Event Hubs för att konfigurera anpassad övervakning och avisering finns i Vad du ska göra med mått- och diagnostikloggar i Event Hubs.
Konfigurera med Azure Storage
Om du vill använda Intelligent Insights med Storage konfigurerar du Intelligent Insights-loggdata som ska strömmas till Lagring, se Loggning av mått och diagnostik och Strömma till Azure Storage.
Anpassade integreringar av Intelligent Insights-loggen
Information om hur du använder Intelligent Insights med verktyg från tredje part eller för anpassad aviserings- och övervakningsutveckling finns i Använda prestandadiagnostikloggen för Intelligent Insights-databasen.
Identifieringsmått
Mått som används för identifieringsmodeller som genererar Intelligent Insights baseras på övervakning:
- Frågevaraktighet
- Tidsgränsbegäranden
- För lång väntetid
- Fel vid utgående begäranden
Frågevaraktighet och tidsgränsbegäranden används som primära modeller för att identifiera problem med databasens arbetsbelastningsprestanda. De används eftersom de direkt mäter vad som händer med arbetsbelastningen. För att identifiera alla möjliga fall av försämrad arbetsbelastningsprestanda används överdriven väntetid och felade begäranden som ytterligare modeller för att indikera problem som påverkar arbetsbelastningens prestanda.
Systemet tar automatiskt hänsyn till ändringar i arbetsbelastningen och ändringar i antalet frågebegäranden som görs i databasen för att dynamiskt fastställa normala och out-of-the-ordinary-tröskelvärden för databasprestanda.
Alla mått betraktas tillsammans i olika relationer via en vetenskapligt härledd datamodell som kategoriserar varje prestandaproblem som identifierats. Information som tillhandahålls via en intelligent insikt omfattar:
- Information om det identifierade prestandaproblemet.
- En rotorsaksanalys av det identifierade problemet.
- Rekommendationer om hur du kan förbättra prestanda för den övervakade databasen, där det är möjligt.
Frågevaraktighet
Frågevaraktighetsförsämringsmodellen analyserar enskilda frågor och identifierar den ökade tid det tar att kompilera och köra en fråga jämfört med prestandabaslinjen.
Om inbyggd intelligens identifierar en betydande ökning av frågekompilerings- eller frågekörningstiden som påverkar arbetsbelastningens prestanda flaggas dessa frågor som problem med prestandaförsämring av frågevaraktighet.
Diagnostikloggen för Intelligent Insights matar ut frågans hash för frågan som försämrats i prestanda. Frågehash anger om prestandaförsämringen var relaterad till frågekompilering eller ökning av körningstiden, vilket ökade frågevaraktighetstiden.
Tidsgränsbegäranden
Nedbrytningsmodellen för timeoutbegäranden analyserar enskilda frågor och identifierar eventuella ökningar av tidsgränser på frågekörningsnivån och de övergripande tidsgränserna för begäranden på databasnivå jämfört med prestandabaslinjeperioden.
Vissa av frågorna kan överskrida tidsgränsen även innan de når körningssteget. Med hjälp av avbrutna arbetare jämfört med förfrågningar som görs mäter inbyggda underrättelser och analyserar alla frågor som nådde databasen oavsett om de kom till körningssteget eller inte.
När antalet tidsgränser för utförda frågor eller antalet avbrutna begärandearbetare överskrider det systemhanterade tröskelvärdet fylls en diagnostiklogg i med intelligenta insikter.
De insikter som genereras innehåller antalet tidsgränsbegäranden och antalet timeout-frågor. Indikation på prestandaförsämring är relaterad till timeoutökning vid körningssteget, eller så tillhandahålls den övergripande databasnivån. När ökningen av timeouter bedöms som betydande för databasprestanda flaggas dessa frågor som problem med prestandaförsämring med tidsgränser.
Långa väntetider
Modellen för överdriven väntetid övervakar enskilda databasfrågor. Den identifierar ovanligt hög frågeväntestatistik som passerade de systemhanterade absoluta tröskelvärdena. Följande frågemått för långa väntetider observeras med hjälp av Query Store Wait Stats (sys.query_store_wait_stats):
- Nå resursgränser
- Nå resursgränser för elastisk pool
- Överdrivet antal arbets- eller sessionstrådar
- Överdriven databaslåsning
- Minnesbelastning
- Annan väntestatistik
Att nå resursgränser eller resursgränser för elastiska pooler anger att förbrukningen av tillgängliga resurser i en prenumeration eller i den elastiska poolen översänt absoluta tröskelvärden. Den här statistiken anger försämrad arbetsbelastningsprestanda. Ett överdrivet antal arbets- eller sessionstrådar anger ett villkor där antalet arbetstrådar eller sessioner som initierats överskred absoluta tröskelvärden. Den här statistiken anger försämrad arbetsbelastningsprestanda.
Överdriven databaslåsning anger ett villkor där antalet lås på en databas har överskridits med absoluta tröskelvärden. Den här statistiken anger en försämring av arbetsbelastningens prestanda. Minnestryck är ett villkor där antalet trådar som begär minne beviljar passerade ett absolut tröskelvärde. Den här statistiken anger en försämring av arbetsbelastningens prestanda.
Annan väntestatistikidentifiering anger ett villkor där diverse mått som mäts via frågearkivets väntestatistik översåg ett absolut tröskelvärde. Den här statistiken anger försämrad arbetsbelastningsprestanda.
Efter att överdrivna väntetider har identifierats, utdata i diagnostikloggen för Intelligent Insights för att påverka och påverka frågor som försämrats i prestanda, information om de mått som gör att frågor väntar i körningen och uppmätt väntetid.
Fel vid begäranden
Degraderingsmodellen för felbegäranden övervakar enskilda frågor och identifierar en ökning av antalet frågor som har felats jämfört med baslinjeperioden. Den här modellen övervakar även kritiska undantag som överskrider absoluta tröskelvärden som hanteras av inbyggd intelligens. Systemet tar automatiskt hänsyn till antalet frågebegäranden som görs till databasen och tar hänsyn till eventuella arbetsbelastningsändringar under den övervakade perioden.
När den uppmätta ökningen av felbegäranden i förhållande till det totala antalet begäranden som görs bedöms som betydande för arbetsbelastningens prestanda flaggas berörda frågor som problem med prestandaförsämring av fel.
Intelligent Insights-loggen matar ut antalet felaktiga begäranden. Den anger om prestandaförsämringen var relaterad till en ökning av felbegäranden eller att överskrida ett tröskelvärde för övervakat kritiskt undantag och den uppmätta tiden för prestandaförsämringen.
Om något av de övervakade kritiska undantagen överskrider de absoluta tröskelvärden som hanteras av systemet genereras en intelligent insikt med viktig undantagsinformation.
Nästa steg
- Lär dig hur du övervakar databaser med hjälp av SQL Analytics.
- Lär dig hur du felsöker prestandaproblem med Intelligent Insights.