normal_distribution Class
Generates a normal distribution.
template<class RealType = double>
class normal_distribution
{
public:
// types
typedef RealType result_type;
struct param_type;
// constructors and reset functions
explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
explicit normal_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& gen);
template<class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
RealType mean() const;
RealType stddev() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
- RealType
The floating-point result type, defaults to double. For possible types, see <random>.
Remarks
The template class describes a distribution that produces values of a user-specified integral type, or type double if none is provided, distributed according to the Normal Distribution. The following table links to articles about individual members.
normal_distribution::mean |
normal_distribution::param |
|
normal_distribution::operator() |
normal_distribution::stddev |
The property functions mean() and stddev() return the values for the stored distribution parameters mean and stddev respectively.
For more information about distribution classes and their members, see <random>.
For detailed information about the Normal distribution, see the Wolfram MathWorld article Normal Distribution.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
using namespace std;
void test(const double m, const double s, const int samples) {
// uncomment to use a non-deterministic seed
// random_device gen;
// mt19937 gen(rd());
mt19937 gen(1701);
normal_distribution<> distr(m, s);
cout << endl;
cout << "min() == " << distr.min() << endl;
cout << "max() == " << distr.max() << endl;
cout << "m() == " << fixed << setw(11) << setprecision(10) << distr.mean() << endl;
cout << "s() == " << fixed << setw(11) << setprecision(10) << distr.stddev() << endl;
// generate the distribution as a histogram
map<double, int> histogram;
for (int i = 0; i < samples; ++i) {
++histogram[distr(gen)];
}
// print results
cout << "Distribution for " << samples << " samples:" << endl;
int counter = 0;
for (const auto& elem : histogram) {
cout << fixed << setw(11) << ++counter << ": "
<< setw(14) << setprecision(10) << elem.first << endl;
}
cout << endl;
}
int main()
{
double m_dist = 1;
double s_dist = 1;
int samples = 10;
cout << "Use CTRL-Z to bypass data entry and run using default values." << endl;
cout << "Enter a floating point value for the 'mean' distribution parameter: ";
cin >> m_dist;
cout << "Enter a floating point value for the 'stddev' distribution parameter (must be greater than zero): ";
cin >> s_dist;
cout << "Enter an integer value for the sample count: ";
cin >> samples;
test(m_dist, s_dist, samples);
}
Output
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'mean' distribution parameter: 0
Enter a floating point value for the 'stddev' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
m() == 0.0000000000
s() == 1.0000000000
Distribution for 10 samples:
1: -0.8845823965
2: -0.1995761116
3: -0.1162665130
4: -0.0685154932
5: 0.0403741461
6: 0.1591327792
7: 1.0414389924
8: 1.5876269426
9: 1.6362637713
10: 2.7821317338
Requirements
Header: <random>
Namespace: std