piecewise_constant_distribution Class
Generates a piecewise constant distribution that has varying-width intervals with uniform probability in each interval.
template<class RealType = double>
class piecewise_constant_distribution
{
public:
// types
typedef RealType result_type;
struct param_type;
// constructor and reset functions
piecewise_constant_distribution();
template<class InputIteratorI, class InputIteratorW>
piecewise_constant_distribution(InputIteratorI firstI, InputIteratorI lastI, InputIteratorW firstW);
template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> intervals, UnaryOperation weightfunc);
template<class UnaryOperation>
piecewise_constant_distribution(size_t count, RealType xmin, RealType xmax, UnaryOperation weightfunc);
explicit piecewise_constant_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& gen);
template<class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
vector<result_type> intervals() const;
vector<result_type> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
- RealType
The floating point result type, defaults to double. For possible types, see <random>.
Remarks
This sampling distribution has varying-width intervals with uniform probability in each interval. For information about other sampling distributions, see piecewise_linear_distribution Class and discrete_distribution.
The following table links to articles about individual members:
piecewise_constant_distribution::piecewise_constant_distribution |
piecewise_constant_distribution::intervals |
piecewise_constant_distribution::param |
piecewise_constant_distribution::operator() |
piecewise_constant_distribution::densities |
The property function intervals() returns a vector<RealType> with the set of stored intervals of the distribution.
The property function densities() returns a vector<RealType> with the stored densities for each interval set, which are calculated according to the weights provided in the constructor parameters.
For more information about distribution classes and their members, see <random>.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
using namespace std;
void test(const int s) {
// uncomment to use a non-deterministic generator
// random_device rd;
// mt19937 gen(rd());
mt19937 gen(1701);
// Three intervals, non-uniform: 0 to 1, 1 to 6, and 6 to 15
vector<double> intervals{ 0, 1, 6, 15 };
// weights determine the densities used by the distribution
vector<double> weights{ 1, 5, 10 };
piecewise_constant_distribution<double> distr(intervals.begin(), intervals.end(), weights.begin());
cout << endl;
cout << "min() == " << distr.min() << endl;
cout << "max() == " << distr.max() << endl;
cout << "intervals (index: interval):" << endl;
vector<double> i = distr.intervals();
int counter = 0;
for (const auto& n : i) {
cout << fixed << setw(11) << counter << ": " << setw(14) << setprecision(10) << n << endl;
++counter;
}
cout << endl;
cout << "densities (index: density):" << endl;
vector<double> d = distr.densities();
counter = 0;
for (const auto& n : d) {
cout << fixed << setw(11) << counter << ": " << setw(14) << setprecision(10) << n << endl;
++counter;
}
cout << endl;
// generate the distribution as a histogram
map<int, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
cout << "Distribution for " << s << " samples:" << endl;
for (const auto& elem : histogram) {
cout << setw(5) << elem.first << '-' << elem.first+1 << ' ' << string(elem.second, ':') << endl;
}
cout << endl;
}
int main()
{
int samples = 100;
cout << "Use CTRL-Z to bypass data entry and run using default values." << endl;
cout << "Enter an integer value for the sample count: ";
cin >> samples;
test(samples);
}
Output
Use CTRL-Z to bypass data entry and run using default values. Enter an integer value for the sample count: 100 min() == 0 max() == 15 intervals (index: interval): 0: 0.0000000000 1: 1.0000000000 2: 6.0000000000 3: 15.0000000000 densities (index: density): 0: 0.0625000000 1: 0.0625000000 2: 0.0694444444 Distribution for 100 samples: 0-1 ::::::: 1-2 :::::: 2-3 ::::: 3-4 :::::: 4-5 ::::::: 5-6 :::::: 6-7 ::: 7-8 :::::::::: 8-9 :::::: 9-10 :::::::::::: 10-11 ::::: 11-12 :::::: 12-13 ::::::::: 13-14 :::: 14-15 ::::::::
Requirements
Header: <random>
Namespace: std