lognormal_distribution Class
Generates a log normal distribution.
template<class RealType = double>
class lognormal_distribution
{
public:
// types
typedef RealType result_type;
struct param_type;
// constructor and reset functions
explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
explicit lognormal_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& gen);
template<class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
RealType m() const;
RealType s() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
- RealType
The floating-point result type, defaults to double. For possible types, see <random>.
Remarks
The template class describes a distribution that produces values of a user-specified integral type, or type double if none is provided, distributed according to the Log Normal Distribution. The following table links to articles about individual members.
lognormal_distribution::m |
lognormal_distribution::param |
|
lognormal_distribution::operator() |
lognormal_distribution::s |
The property functions m() and s() return the values for the stored distribution parameters m and s respectively.
For more information about distribution classes and their members, see <random>.
For detailed information about the LogNormal distribution, see the Wolfram MathWorld article LogNormal Distribution.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
using namespace std;
void test(const double m, const double s, const int samples) {
// uncomment to use a non-deterministic seed
// random_device gen;
// mt19937 gen(rd());
mt19937 gen(1701);
lognormal_distribution<> distr(m, s);
cout << endl;
cout << "min() == " << distr.min() << endl;
cout << "max() == " << distr.max() << endl;
cout << "m() == " << fixed << setw(11) << setprecision(10) << distr.m() << endl;
cout << "s() == " << fixed << setw(11) << setprecision(10) << distr.s() << endl;
// generate the distribution as a histogram
map<double, int> histogram;
for (int i = 0; i < samples; ++i) {
++histogram[distr(gen)];
}
// print results
cout << "Distribution for " << samples << " samples:" << endl;
int counter = 0;
for (const auto& elem : histogram) {
cout << fixed << setw(11) << ++counter << ": "
<< setw(14) << setprecision(10) << elem.first << endl;
}
cout << endl;
}
int main()
{
double m_dist = 1;
double s_dist = 1;
int samples = 10;
cout << "Use CTRL-Z to bypass data entry and run using default values." << endl;
cout << "Enter a floating point value for the 'm' distribution parameter: ";
cin >> m_dist;
cout << "Enter a floating point value for the 's' distribution parameter (must be greater than zero): ";
cin >> s_dist;
cout << "Enter an integer value for the sample count: ";
cin >> samples;
test(m_dist, s_dist, samples);
}
Output
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'm' distribution parameter: 0
Enter a floating point value for the 's' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
m() == 0.0000000000
s() == 1.0000000000
Distribution for 10 samples:
1: 0.3862809339
2: 0.4128865601
3: 0.4490576787
4: 0.4862035428
5: 0.5930607126
6: 0.8190778771
7: 0.8902379317
8: 2.8332911667
9: 5.1359445565
10: 5.4406507912
Requirements
Header: <random>
Namespace: std