Belge Yönetim Bilgileri payStub modeli
Document Intelligence payStub modeli, maaş ve kazanç verilerini ödeme makbuzlarından analiz etmek ve ayıklamak için güçlü Optik Karakter Tanıma (OCR) özelliklerini derin öğrenme modelleriyle birleştirir. API, bordroyla ilgili bilgileri içeren belgeleri ve dosyaları analiz eder; anahtar bilgilerini ayıklar ve yapılandırılmış bir JSON veri gösterimi döndürür.
Özellik | sürüm | Model Kimliği |
---|---|---|
payStub modeli | • v4.0:2024-07-31 (önizleme) | prebuilt-payStub.us |
payStub veri ayıklamayı deneyin
Ödeme saplamaları, işverenler tarafından çalışanlara verilen, belirli bir ödeme dönemine ait kazançlar, kesintiler ve net ödeme bilgileri sağlayan temel belgelerdir. Modeli kullanarak prebuilt-payStub.us
verilerin nasıl ayıklandığına bakın. Aşağıdaki kaynaklara ihtiyacınız vardır:
Azure portalında bir Belge Zekası örneği. Hizmeti denemek için ücretsiz fiyatlandırma katmanını (
F0
) kullanabilirsiniz. Kaynağınız dağıtıldıktan sonra anahtarınızı ve uç noktanızı almak için Kaynağa git'i seçin.
Belge Makine Zekası Stüdyosu
Document Intelligence Studio giriş sayfasında payStub öğesini seçin.
Örnek ödeme saplama işlemini analiz edebilir veya kendi dosyalarınızı karşıya yükleyebilirsiniz.
Analizi çalıştır düğmesini seçin ve gerekirse Çözümle seçeneklerini yapılandırın:
Giriş gereksinimleri
Desteklenen dosya biçimleri:
Model PDF Resim: JPEG/JPG
,PNG
,BMP
,TIFF
,HEIF
Microsoft Office:
Word (DOCX
), Excel (XLSX
), PowerPoint (PPTX
), HTMLOkundu ✔ ✔ ✔ Düzen ✔ ✔ ✔ (2024-07-31-preview, 2024-02-29-preview, 2023-10-31-preview) Genel Belge ✔ ✔ Önceden oluşturulmuş ✔ ✔ Özel ayıklama ✔ ✔ Özel sınıflandırma ✔ ✔ ✔ (2024-07-31-preview, 2024-02-29-preview) En iyi sonuçları elde için belge başına tek bir net fotoğraf veya yüksek kaliteli tarama sağlayın.
PDF ve TIFF için en fazla 2.000 sayfa işlenebilir (ücretsiz katman aboneliğiyle yalnızca ilk iki sayfa işlenir).
Belgeleri analiz etmek için dosya boyutu ücretli (S0) katman için 500 MB ve
4
ücretsiz (F0) katman için MB'tır.Görüntü boyutları 50 piksel x 50 piksel ile 10.000 piksel x 10.000 piksel arasında olmalıdır.
PDF’leriniz parola korumalıysa göndermeden önce kilidi kaldırmanız gerekir.
Ayıklanacak metnin en düşük yüksekliği 1024 x 768 piksel görüntü için 12 pikseldir. Bu boyut, yaklaşık 150 nokta/inç (DPI) nokta metnine karşılık gelir
8
.Özel model eğitimi için eğitim verileri için en fazla sayfa sayısı özel şablon modeli için 500, özel sinir modeli için 50.000'dir.
Özel ayıklama modeli eğitimi için eğitim verilerinin toplam boyutu şablon modeli için 50 MB ve
1
sinir modeli için GB'tır.Özel sınıflandırma modeli eğitimi için eğitim verilerinin toplam boyutu en fazla 10.000 sayfa ile GB'tır
1
. 2024-07-31-preview ve üzeri sürümler için eğitim verilerinin toplam boyutu gb ve en fazla 10.000 sayfadır2
.
Desteklenen diller ve yerel ayarlar
Desteklenen dillerin tam listesi için önceden oluşturulmuş model dili destek sayfamıza bakın.
Alan ayıklamaları
Desteklenen belge ayıklama alanları için GitHub örnek depomuzdaki payStub model şeması sayfasına bakın.
Desteklenen yerel ayarlar
prebuilt-payStub.us sürüm 2027-07-31-preview en-us yerel ayarını destekler.
Sonraki adımlar
Document Intelligence Studio ile kendi formlarınızı ve belgelerinizi işlemeyi deneyin
Belge Zekası hızlı başlangıcını tamamlayın ve seçtiğiniz geliştirme dilinde bir belge işleme uygulaması oluşturmaya başlayın.