ConversionsCatalog.MapKeyToBinaryVector Yöntem
Tanım
Önemli
Bazı bilgiler ürünün ön sürümüyle ilgilidir ve sürüm öncesinde önemli değişiklikler yapılmış olabilir. Burada verilen bilgilerle ilgili olarak Microsoft açık veya zımni hiçbir garanti vermez.
Anahtar türlerini özgün değerin karşılık gelen ikili gösterimine dönüştüren bir KeyToBinaryVectorMappingEstimatoroluşturun.
public static Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator MapKeyToBinaryVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default);
static member MapKeyToBinaryVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string -> Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator
<Extension()>
Public Function MapKeyToBinaryVector (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing) As KeyToBinaryVectorMappingEstimator
Parametreler
Kategorik dönüşümün kataloğu.
- outputColumnName
- String
dönüştürmesinden kaynaklanan sütunun inputColumnName
adı.
Veri türü, giriş değerini temsil eden bilinen boyutta bir vektördür Single .
- inputColumnName
- String
Dönüştürülecek sütunun adı. olarak ayarlanırsa null
outputColumnName
değeri kaynak olarak kullanılır.
Veri türü bir anahtar veya anahtarların bilinen boyut vektördür.
Döndürülenler
Örnekler
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
class MapKeyToBinaryVector
{
/// This example demonstrates the use of MapKeyToVector by mapping keys to
/// floats[] of 0 and 1, representing the number in binary format.
/// Because the ML.NET KeyType maps the missing value to zero, counting
/// starts at 1, so the uint values converted to KeyTypes will appear
/// skewed by one.
/// See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = 9 },
new DataPoint() { Timeframe = 8 },
new DataPoint() { Timeframe = 8 },
new DataPoint() { Timeframe = 9 },
new DataPoint() { Timeframe = 2 },
new DataPoint() { Timeframe = 3 }
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Constructs the ML.net pipeline
var pipeline = mlContext.Transforms.Conversion.MapKeyToBinaryVector(
"TimeframeVector", "Timeframe");
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine($" Timeframe TimeframeVector");
foreach (var featureRow in features)
Console.WriteLine($"{featureRow.Timeframe}\t\t\t" +
$"{string.Join(',', featureRow.TimeframeVector)}");
// Timeframe TimeframeVector
// 10 0,1,0,0,1 //binary representation of 9, the original value
// 9 0,1,0,0,0 //binary representation of 8, the original value
// 9 0,1,0,0,0
// 10 0,1,0,0,1
// 3 0,0,0,1,0
// 4 0,0,0,1,1
}
private class DataPoint
{
[KeyType(10)]
public uint Timeframe { get; set; }
}
private class TransformedData : DataPoint
{
public float[] TimeframeVector { get; set; }
}
}
}