ConversionsExtensionsCatalog.MapKeyToVector Yöntem
Tanım
Önemli
Bazı bilgiler ürünün ön sürümüyle ilgilidir ve sürüm öncesinde önemli değişiklikler yapılmış olabilir. Burada verilen bilgilerle ilgili olarak Microsoft açık veya zımni hiçbir garanti vermez.
Aşırı Yüklemeler
MapKeyToVector(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[], Boolean) |
Bir KeyToVectorMappingEstimatoranahtarın değerini değeri temsil eden kayan nokta vektörine eşleyen bir oluşturun. |
MapKeyToVector(TransformsCatalog+ConversionTransforms, String, String, Boolean) |
Bir KeyToVectorMappingEstimatoranahtarın değerini değeri temsil eden kayan nokta vektörine eşleyen bir oluşturun. |
MapKeyToVector(TransformsCatalog+ConversionTransforms, InputOutputColumnPair[], Boolean)
Bir KeyToVectorMappingEstimatoranahtarın değerini değeri temsil eden kayan nokta vektörine eşleyen bir oluşturun.
public static Microsoft.ML.Transforms.KeyToVectorMappingEstimator MapKeyToVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, Microsoft.ML.InputOutputColumnPair[] columns, bool outputCountVector = false);
static member MapKeyToVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * Microsoft.ML.InputOutputColumnPair[] * bool -> Microsoft.ML.Transforms.KeyToVectorMappingEstimator
<Extension()>
Public Function MapKeyToVector (catalog As TransformsCatalog.ConversionTransforms, columns As InputOutputColumnPair(), Optional outputCountVector As Boolean = false) As KeyToVectorMappingEstimator
Parametreler
Dönüştürme dönüşüm kataloğu.
- columns
- InputOutputColumnPair[]
Giriş ve çıkış sütunları. Yeni sütunun veri türü, özgün değeri temsil eden bir vektördür Single .
- outputCountVector
- Boolean
Birden çok gösterge vektörünün birleştirme yerine tek bir sayı vektörünün birleştirilip birleştirmeyeceği. Bu yalnızca giriş sütunu bir anahtar vektör olduğunda geçerlidir.
Döndürülenler
Örnekler
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public class MapKeyToVectorMultiColumn
{
/// This example demonstrates the use of MapKeyToVector by mapping keys to
/// floats[] for multiple columns at once. Because the ML.NET KeyType maps
/// the missing value to zero, counting starts at 1, so the uint values
/// converted to KeyTypes will appear skewed by one.
/// See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = 9, Category = 5 },
new DataPoint() { Timeframe = 8, Category = 4 },
new DataPoint() { Timeframe = 8, Category = 4 },
new DataPoint() { Timeframe = 9, Category = 3 },
new DataPoint() { Timeframe = 2, Category = 3 },
new DataPoint() { Timeframe = 3, Category = 5 }
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Constructs the ML.net pipeline
var pipeline = mlContext.Transforms.Conversion.MapKeyToVector(new[]{
new InputOutputColumnPair ("TimeframeVector", "Timeframe"),
new InputOutputColumnPair ("CategoryVector", "Category")
});
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine($" Timeframe TimeframeVector " +
$"Category CategoryVector");
foreach (var featureRow in features)
Console.WriteLine(featureRow.Timeframe + " " +
string.Join(',', featureRow.TimeframeVector) + " " +
featureRow.Category + " " +
string.Join(',', featureRow.CategoryVector));
// TransformedData obtained post-transformation.
//
// Timeframe TimeframeVector Category CategoryVector
// 10 0,0,0,0,0,0,0,0,0,1 6 0,0,0,0,0
// 9 0,0,0,0,0,0,0,0,1,0 5 0,0,0,0,1
// 9 0,0,0,0,0,0,0,0,1,0 5 0,0,0,0,1
// 10 0,0,0,0,0,0,0,0,0,1 4 0,0,0,1,0
// 3 0,0,1,0,0,0,0,0,0,0 4 0,0,0,1,0
// 4 0,0,0,1,0,0,0,0,0,0 6 0,0,0,0,0
}
private class DataPoint
{
// The maximal value used is 9; but since 0 is reserved for missing
// value, we set the count to 10.
[KeyType(10)]
public uint Timeframe { get; set; }
[KeyType(6)]
public uint Category { get; set; }
}
private class TransformedData : DataPoint
{
public float[] TimeframeVector { get; set; }
public float[] CategoryVector { get; set; }
}
}
}
Açıklamalar
Bu dönüşüm birkaç anahtar sütunu üzerinde çalışabilir.
Şunlara uygulanır
MapKeyToVector(TransformsCatalog+ConversionTransforms, String, String, Boolean)
Bir KeyToVectorMappingEstimatoranahtarın değerini değeri temsil eden kayan nokta vektörine eşleyen bir oluşturun.
public static Microsoft.ML.Transforms.KeyToVectorMappingEstimator MapKeyToVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default, bool outputCountVector = false);
static member MapKeyToVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string * bool -> Microsoft.ML.Transforms.KeyToVectorMappingEstimator
<Extension()>
Public Function MapKeyToVector (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional outputCountVector As Boolean = false) As KeyToVectorMappingEstimator
Parametreler
Dönüştürme dönüşüm kataloğu.
- outputColumnName
- String
dönüştürmesinden kaynaklanan sütunun inputColumnName
adı.
Veri türü, giriş değerini temsil eden bir vektördür Single .
- inputColumnName
- String
Dönüştürülecek sütunun adı. olarak ayarlanırsa null
outputColumnName
değeri kaynak olarak kullanılır.
Bu dönüşüm anahtarlar üzerinde çalışır.
- outputCountVector
- Boolean
Birden çok gösterge vektörünün birleştirme yerine tek bir sayı vektörünün birleştirilip birleştirmeyeceği. Bu yalnızca giriş sütunu bir anahtar vektör olduğunda geçerlidir.
Döndürülenler
Örnekler
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
class MapKeyToVector
{
/// This example demonstrates the use of MapKeyToVector by mapping keys to
/// floats[]. Because the ML.NET KeyType maps the missing value to zero,
/// counting starts at 1, so the uint values converted to KeyTypes will
/// appear skewed by one. See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = 8, PartA=1, PartB=2},
new DataPoint() { Timeframe = 7, PartA=2, PartB=1},
new DataPoint() { Timeframe = 8, PartA=3, PartB=2},
new DataPoint() { Timeframe = 3, PartA=3, PartB=3}
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// First transform just maps key type to indicator vector. i.e. it's
// produces vector filled with zeros with size of key cardinality and
// set 1 to corresponding key's value index in that array. After that we
// concatenate two columns with single int values into vector of ints.
// Third transform will create vector of keys, where key type is shared
// across whole vector. Forth transform output data as count vector and
// that vector would have size equal to shared key type cardinality and
// put key counts to corresponding indexes in array. Fifth transform
// output indicator vector for each key and concatenate them together.
// Result vector would be size of key cardinality multiplied by size of
// original vector.
var pipeline = mlContext.Transforms.Conversion.MapKeyToVector(
"TimeframeVector", "Timeframe")
.Append(mlContext.Transforms.Concatenate("Parts", "PartA", "PartB"))
.Append(mlContext.Transforms.Conversion.MapValueToKey("Parts"))
.Append(mlContext.Transforms.Conversion.MapKeyToVector(
"PartsCount", "Parts", outputCountVector: true))
.Append(mlContext.Transforms.Conversion.MapKeyToVector(
"PartsNoCount", "Parts"));
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine("Timeframe TimeframeVector PartsCount " +
"PartsNoCount");
foreach (var featureRow in features)
Console.WriteLine(featureRow.Timeframe + " " +
string.Join(',', featureRow.TimeframeVector.Select(x => x)) + " "
+ string.Join(',', featureRow.PartsCount.Select(x => x)) +
" " + string.Join(',', featureRow.PartsNoCount.Select(
x => x)));
// Expected output:
// Timeframe TimeframeVector PartsCount PartsNoCount
// 9 0,0,0,0,0,0,0,0,1 1,1,0 1,0,0,0,1,0
// 8 0,0,0,0,0,0,0,1,0 1,1,0 0,1,0,1,0,0
// 9 0,0,0,0,0,0,0,0,1 0,1,1 0,0,1,0,1,0
// 4 0,0,0,1,0,0,0,0,0 0,0,2 0,0,1,0,0,1
}
private class DataPoint
{
[KeyType(9)]
public uint Timeframe { get; set; }
public int PartA { get; set; }
public int PartB { get; set; }
}
private class TransformedData : DataPoint
{
public float[] TimeframeVector { get; set; }
public float[] PartsCount { get; set; }
public float[] PartsNoCount { get; set; }
}
}
}