StandardTrainersCatalog.LinearSvm Yöntem

Tanım

Aşırı Yüklemeler

LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LinearSvmTrainer+Options)

Boole etiket verileri üzerinde eğitilmiş doğrusal bir ikili sınıflandırma modeli kullanarak hedefi tahmin eden gelişmiş seçeneklerle oluşturun LinearSvmTrainer .

LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32)

Boole etiket verileri üzerinde eğitilmiş doğrusal bir ikili sınıflandırma modeli kullanarak hedefi tahmin eden oluşturma LinearSvmTrainer.

LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LinearSvmTrainer+Options)

Boole etiket verileri üzerinde eğitilmiş doğrusal bir ikili sınıflandırma modeli kullanarak hedefi tahmin eden gelişmiş seçeneklerle oluşturun LinearSvmTrainer .

public static Microsoft.ML.Trainers.LinearSvmTrainer LinearSvm (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.LinearSvmTrainer.Options options);
static member LinearSvm : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.LinearSvmTrainer.Options -> Microsoft.ML.Trainers.LinearSvmTrainer
<Extension()>
Public Function LinearSvm (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As LinearSvmTrainer.Options) As LinearSvmTrainer

Parametreler

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

İkili sınıflandırma kataloğu eğitmen nesnesi.

options
LinearSvmTrainer.Options

Eğitmen seçenekleri.

Döndürülenler

Örnekler

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LinearSvmWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new LinearSvmTrainer.Options
            {
                BatchSize = 10,
                PerformProjection = true,
                NumberOfIterations = 10
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LinearSvm(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .EvaluateNonCalibrated(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.85
            //   AUC: 0.95
            //   F1 Score: 0.86
            //   Negative Precision: 0.91
            //   Negative Recall: 0.80
            //   Positive Precision: 0.80
            //   Positive Recall: 0.92
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      218 |       20 | 0.9160
            //    negative ||       53 |      209 | 0.7977
            //             ||======================
            //   Precision ||   0.8044 |   0.9127 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

Şunlara uygulanır

LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32)

Boole etiket verileri üzerinde eğitilmiş doğrusal bir ikili sınıflandırma modeli kullanarak hedefi tahmin eden oluşturma LinearSvmTrainer.

public static Microsoft.ML.Trainers.LinearSvmTrainer LinearSvm (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfIterations = 1);
static member LinearSvm : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * int -> Microsoft.ML.Trainers.LinearSvmTrainer
<Extension()>
Public Function LinearSvm (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfIterations As Integer = 1) As LinearSvmTrainer

Parametreler

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

İkili sınıflandırma kataloğu eğitmen nesnesi.

labelColumnName
String

Etiket sütununun adı. Sütun verileri olmalıdır Boolean.

featureColumnName
String

Özellik sütununun adı. Sütun verileri bilinen boyutlu bir vektör Singleolmalıdır.

exampleWeightColumnName
String

Örnek ağırlık sütununun adı (isteğe bağlı).

numberOfIterations
Int32

Eğitim yinelemesi sayısı.

Döndürülenler

Örnekler

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LinearSvm
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LinearSvm();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .EvaluateNonCalibrated(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.73
            //   AUC: 0.83
            //   F1 Score: 0.75
            //   Negative Precision: 0.84
            //   Negative Recall: 0.60
            //   Positive Precision: 0.66
            //   Positive Recall: 0.87
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      208 |       30 | 0.8739
            //   negative ||      106 |      156 | 0.5954
            //             ||======================
            //   Precision ||   0.6624 |   0.8387 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

Şunlara uygulanır