LbfgsPoissonRegressionTrainer Sınıf

Tanım

IEstimator<TTransformer> Poisson regresyon modelini eğitme için.

public sealed class LbfgsPoissonRegressionTrainer : Microsoft.ML.Trainers.LbfgsTrainerBase<Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.PoissonRegressionModelParameters>,Microsoft.ML.Trainers.PoissonRegressionModelParameters>
type LbfgsPoissonRegressionTrainer = class
    inherit LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
Public NotInheritable Class LbfgsPoissonRegressionTrainer
Inherits LbfgsTrainerBase(Of LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer(Of PoissonRegressionModelParameters), PoissonRegressionModelParameters)
Devralma

Açıklamalar

Bu eğitmeni oluşturmak için LbfgsPoissonRegression veya LbfgsPoissonRegression(Seçenekler) kullanın.

Giriş ve Çıkış Sütunları

Giriş etiketi sütun verileri olmalıdır Single. Giriş özellikleri sütun verileri bilinen boyutlu bir vektör Singleolmalıdır.

Bu eğitmen aşağıdaki sütunları oluşturur:

Çıkış Sütunu Adı Sütun Türü Description
Score Single Model tarafından tahmin edilen ilişkisiz puan.

Eğitmen Özellikleri

Makine öğrenmesi görevi Regresyon
Normalleştirme gerekli mi? Yes
Önbelleğe alma gerekli mi? No
Microsoft.ML ek olarak gerekli NuGet Hiçbiri
ONNX'e aktarılabilir Yes

Eğitim Algoritması Ayrıntıları

Poisson regresyonu parametreli bir regresyon yöntemidir. Bağımlı değişkenin koşullu ortalamasının günlüğünün bağımlı değişkenlerin doğrusal bir işlevini izlediğini varsayar. Bağımlı değişkenin Poisson dağılımını izlediği varsayıldığında, elde edilen gözlemlerin olasılığını en üst düzeye çıkararak regresyon parametreleri tahmin edilebilir.

Kullanım örneklerinin bağlantıları için Ayrıca Bkz. bölümüne bakın.

Alanlar

FeatureColumn

Eğitmenin beklediği özellik sütunu.

(Devralındığı yer: TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Eğitmenin beklediği etiket sütunu. etiketin eğitim için kullanılmadığını gösteren olabilir null.

(Devralındığı yer: TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Eğitmenin beklediği ağırlık sütunu. olabilir null, bu da ağırlığın eğitim için kullanılmadığını gösterir.

(Devralındığı yer: TrainerEstimatorBase<TTransformer,TModel>)

Özellikler

Info

IEstimator<TTransformer> Poisson regresyon modelini eğitme için.

(Devralındığı yer: LbfgsTrainerBase<TOptions,TTransformer,TModel>)

Yöntemler

Fit(IDataView, LinearModelParameters)

Önceden eğitilmiş linearModel bir kullanarak bir LbfgsPoissonRegressionTrainer öğesinin eğitimine devam eder ve bir RegressionPredictionTransformer<TModel>döndürür.

Fit(IDataView)

Bir ITransformereğiter ve döndürür.

(Devralındığı yer: TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

IEstimator<TTransformer> Poisson regresyon modelini eğitme için.

(Devralındığı yer: TrainerEstimatorBase<TTransformer,TModel>)

Uzantı Metotları

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Tahmin aracı zincirine bir 'önbelleğe alma denetim noktası' ekler. Bu, aşağı akış tahmincilerinin önbelleğe alınan verilere karşı eğitilmesini sağlar. Birden çok veri geçişi alan eğitmenlerden önce bir önbelleğe alma denetim noktası olması yararlıdır.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Tahmin aracı verildiğinde, çağrıldıktan sonra Fit(IDataView) temsilci çağıracak bir sarmalama nesnesi döndürün. Tahmin aracının neyin uygun olduğu hakkında bilgi döndürmesi genellikle önemlidir. Bu nedenle Fit(IDataView) yöntem yalnızca genel ITransformerbir nesne yerine özel olarak yazılan bir nesne döndürür. Bununla birlikte, aynı zamanda, IEstimator<TTransformer> genellikle birçok nesneye sahip işlem hatları halinde oluşturulur, bu nedenle transformatör almak istediğimiz tahmin aracının EstimatorChain<TLastTransformer> bu zincirde bir yere gömülü olduğu bir tahmin aracı zinciri oluşturmamız gerekebilir. Bu senaryo için, bu yöntem aracılığıyla sığdır çağrıldıktan sonra çağrılacak bir temsilci ekleyebiliriz.

Şunlara uygulanır

Ayrıca bkz.