WaitHandle.SignalAndWait Methode

Definition

Signalisiert ein WaitHandle und wartet auf einen anderen.

Überlädt

SignalAndWait(WaitHandle, WaitHandle)

Signalisiert ein WaitHandle und wartet auf einen anderen.

SignalAndWait(WaitHandle, WaitHandle, Int32, Boolean)

Signalisiert ein WaitHandle und wartet auf ein weiteres, wobei ein Timeoutintervall als 32-Bit-Ganzzahl mit Vorzeichen angegeben und festgelegt wird, ob die Synchronisierungsdomäne des Kontexts vor dem Wartevorgang verlassen werden soll.

SignalAndWait(WaitHandle, WaitHandle, TimeSpan, Boolean)

Signalisiert ein WaitHandle und wartet auf ein weiteres, wobei das Timeoutintervall als TimeSpan angegeben und festgelegt wird, ob die Synchronisierungsdomäne des Kontexts vor dem Wartevorgang verlassen werden soll.

SignalAndWait(WaitHandle, WaitHandle)

Quelle:
WaitHandle.cs
Quelle:
WaitHandle.cs
Quelle:
WaitHandle.cs

Signalisiert ein WaitHandle und wartet auf einen anderen.

public:
 static bool SignalAndWait(System::Threading::WaitHandle ^ toSignal, System::Threading::WaitHandle ^ toWaitOn);
public static bool SignalAndWait (System.Threading.WaitHandle toSignal, System.Threading.WaitHandle toWaitOn);
static member SignalAndWait : System.Threading.WaitHandle * System.Threading.WaitHandle -> bool
Public Shared Function SignalAndWait (toSignal As WaitHandle, toWaitOn As WaitHandle) As Boolean

Parameter

toSignal
WaitHandle

Das zu signalisierende WaitHandle.

toWaitOn
WaitHandle

Das WaitHandle, auf das gewartet werden soll.

Gibt zurück

true, wenn das Signal und der Wartevorgang erfolgreich abgeschlossen wurden. Wenn der Wartevorgang nicht abgeschlossen wird, wird die Methode nicht beendet.

Ausnahmen

toSignal ist null.

- oder -

toWaitOn ist null.

Die Methode wurde in einem Thread im Status STA aufgerufen.

toSignal ist ein Semaphor, und die maximale Anzahl ist bereits erreicht.

Der Wartevorgang wird abgeschlossen, weil ein Thread beendet wurde, ohne ein Mutex freizugeben.

Beispiele

Im folgenden Codebeispiel wird die SignalAndWait(WaitHandle, WaitHandle) Methodenüberladung verwendet, um dem Standard Thread zu ermöglichen, einen blockierten Thread zu signalisieren und dann zu warten, bis der Thread eine Aufgabe abgeschlossen hat.

Das Beispiel startet fünf Threads, ermöglicht ihnen das Blockieren eines EventWaitHandle mit dem EventResetMode.AutoReset Flag erstellten Threads und gibt dann bei jedem Drücken der EINGABETASTE einen Thread frei. Im Beispiel werden dann weitere fünf Threads in die Warteschlange gestellt und alle mithilfe eines EventWaitHandle mit dem EventResetMode.ManualReset Flag erstellten freigegeben.

using namespace System;
using namespace System::Threading;

public ref class Example
{
private:
   // The EventWaitHandle used to demonstrate the difference
   // between AutoReset and ManualReset synchronization events.
   //
   static EventWaitHandle^ ewh;

   // A counter to make sure all threads are started and
   // blocked before any are released. A Long is used to show
   // the use of the 64-bit Interlocked methods.
   //
   static __int64 threadCount = 0;

   // An AutoReset event that allows the main thread to block
   // until an exiting thread has decremented the count.
   //
   static EventWaitHandle^ clearCount =
      gcnew EventWaitHandle( false,EventResetMode::AutoReset );

public:
   [MTAThread]
   static void main()
   {
      // Create an AutoReset EventWaitHandle.
      //
      ewh = gcnew EventWaitHandle( false,EventResetMode::AutoReset );
      
      // Create and start five numbered threads. Use the
      // ParameterizedThreadStart delegate, so the thread
      // number can be passed as an argument to the Start
      // method.
      for ( int i = 0; i <= 4; i++ )
      {
         Thread^ t = gcnew Thread(
            gcnew ParameterizedThreadStart( ThreadProc ) );
         t->Start( i );
      }
      
      // Wait until all the threads have started and blocked.
      // When multiple threads use a 64-bit value on a 32-bit
      // system, you must access the value through the
      // Interlocked class to guarantee thread safety.
      //
      while ( Interlocked::Read( threadCount ) < 5 )
      {
         Thread::Sleep( 500 );
      }

      // Release one thread each time the user presses ENTER,
      // until all threads have been released.
      //
      while ( Interlocked::Read( threadCount ) > 0 )
      {
         Console::WriteLine( L"Press ENTER to release a waiting thread." );
         Console::ReadLine();
         
         // SignalAndWait signals the EventWaitHandle, which
         // releases exactly one thread before resetting,
         // because it was created with AutoReset mode.
         // SignalAndWait then blocks on clearCount, to
         // allow the signaled thread to decrement the count
         // before looping again.
         //
         WaitHandle::SignalAndWait( ewh, clearCount );
      }
      Console::WriteLine();
      
      // Create a ManualReset EventWaitHandle.
      //
      ewh = gcnew EventWaitHandle( false,EventResetMode::ManualReset );
      
      // Create and start five more numbered threads.
      //
      for ( int i = 0; i <= 4; i++ )
      {
         Thread^ t = gcnew Thread(
            gcnew ParameterizedThreadStart( ThreadProc ) );
         t->Start( i );
      }
      
      // Wait until all the threads have started and blocked.
      //
      while ( Interlocked::Read( threadCount ) < 5 )
      {
         Thread::Sleep( 500 );
      }

      // Because the EventWaitHandle was created with
      // ManualReset mode, signaling it releases all the
      // waiting threads.
      //
      Console::WriteLine( L"Press ENTER to release the waiting threads." );
      Console::ReadLine();
      ewh->Set();

   }

   static void ThreadProc( Object^ data )
   {
      int index = static_cast<Int32>(data);

      Console::WriteLine( L"Thread {0} blocks.", data );
      // Increment the count of blocked threads.
      Interlocked::Increment( threadCount );
      
      // Wait on the EventWaitHandle.
      ewh->WaitOne();

      Console::WriteLine( L"Thread {0} exits.", data );
      // Decrement the count of blocked threads.
      Interlocked::Decrement( threadCount );
      
      // After signaling ewh, the main thread blocks on
      // clearCount until the signaled thread has
      // decremented the count. Signal it now.
      //
      clearCount->Set();
   }
};
using System;
using System.Threading;

public class Example
{
    // The EventWaitHandle used to demonstrate the difference
    // between AutoReset and ManualReset synchronization events.
    //
    private static EventWaitHandle ewh;

    // A counter to make sure all threads are started and
    // blocked before any are released. A Long is used to show
    // the use of the 64-bit Interlocked methods.
    //
    private static long threadCount = 0;

    // An AutoReset event that allows the main thread to block
    // until an exiting thread has decremented the count.
    //
    private static EventWaitHandle clearCount = 
        new EventWaitHandle(false, EventResetMode.AutoReset);

    [MTAThread]
    public static void Main()
    {
        // Create an AutoReset EventWaitHandle.
        //
        ewh = new EventWaitHandle(false, EventResetMode.AutoReset);

        // Create and start five numbered threads. Use the
        // ParameterizedThreadStart delegate, so the thread
        // number can be passed as an argument to the Start 
        // method.
        for (int i = 0; i <= 4; i++)
        {
            Thread t = new Thread(
                new ParameterizedThreadStart(ThreadProc)
            );
            t.Start(i);
        }

        // Wait until all the threads have started and blocked.
        // When multiple threads use a 64-bit value on a 32-bit
        // system, you must access the value through the
        // Interlocked class to guarantee thread safety.
        //
        while (Interlocked.Read(ref threadCount) < 5)
        {
            Thread.Sleep(500);
        }

        // Release one thread each time the user presses ENTER,
        // until all threads have been released.
        //
        while (Interlocked.Read(ref threadCount) > 0)
        {
            Console.WriteLine("Press ENTER to release a waiting thread.");
            Console.ReadLine();

            // SignalAndWait signals the EventWaitHandle, which
            // releases exactly one thread before resetting, 
            // because it was created with AutoReset mode. 
            // SignalAndWait then blocks on clearCount, to 
            // allow the signaled thread to decrement the count
            // before looping again.
            //
            WaitHandle.SignalAndWait(ewh, clearCount);
        }
        Console.WriteLine();

        // Create a ManualReset EventWaitHandle.
        //
        ewh = new EventWaitHandle(false, EventResetMode.ManualReset);

        // Create and start five more numbered threads.
        //
        for(int i=0; i<=4; i++)
        {
            Thread t = new Thread(
                new ParameterizedThreadStart(ThreadProc)
            );
            t.Start(i);
        }

        // Wait until all the threads have started and blocked.
        //
        while (Interlocked.Read(ref threadCount) < 5)
        {
            Thread.Sleep(500);
        }

        // Because the EventWaitHandle was created with
        // ManualReset mode, signaling it releases all the
        // waiting threads.
        //
        Console.WriteLine("Press ENTER to release the waiting threads.");
        Console.ReadLine();
        ewh.Set();
    }

    public static void ThreadProc(object data)
    {
        int index = (int) data;

        Console.WriteLine("Thread {0} blocks.", data);
        // Increment the count of blocked threads.
        Interlocked.Increment(ref threadCount);

        // Wait on the EventWaitHandle.
        ewh.WaitOne();

        Console.WriteLine("Thread {0} exits.", data);
        // Decrement the count of blocked threads.
        Interlocked.Decrement(ref threadCount);

        // After signaling ewh, the main thread blocks on
        // clearCount until the signaled thread has 
        // decremented the count. Signal it now.
        //
        clearCount.Set();
    }
}
Imports System.Threading

Public Class Example

    ' The EventWaitHandle used to demonstrate the difference
    ' between AutoReset and ManualReset synchronization events.
    '
    Private Shared ewh As EventWaitHandle

    ' A counter to make sure all threads are started and
    ' blocked before any are released. A Long is used to show
    ' the use of the 64-bit Interlocked methods.
    '
    Private Shared threadCount As Long = 0

    ' An AutoReset event that allows the main thread to block
    ' until an exiting thread has decremented the count.
    '
    Private Shared clearCount As New EventWaitHandle(False, _
        EventResetMode.AutoReset)

    <MTAThread> _
    Public Shared Sub Main()

        ' Create an AutoReset EventWaitHandle.
        '
        ewh = New EventWaitHandle(False, EventResetMode.AutoReset)

        ' Create and start five numbered threads. Use the
        ' ParameterizedThreadStart delegate, so the thread
        ' number can be passed as an argument to the Start 
        ' method.
        For i As Integer = 0 To 4
            Dim t As New Thread(AddressOf ThreadProc)
            t.Start(i)
        Next i

        ' Wait until all the threads have started and blocked.
        ' When multiple threads use a 64-bit value on a 32-bit
        ' system, you must access the value through the
        ' Interlocked class to guarantee thread safety.
        '
        While Interlocked.Read(threadCount) < 5
            Thread.Sleep(500)
        End While

        ' Release one thread each time the user presses ENTER,
        ' until all threads have been released.
        '
        While Interlocked.Read(threadCount) > 0
            Console.WriteLine("Press ENTER to release a waiting thread.")
            Console.ReadLine()

            ' SignalAndWait signals the EventWaitHandle, which
            ' releases exactly one thread before resetting, 
            ' because it was created with AutoReset mode. 
            ' SignalAndWait then blocks on clearCount, to 
            ' allow the signaled thread to decrement the count
            ' before looping again.
            '
            WaitHandle.SignalAndWait(ewh, clearCount)
        End While
        Console.WriteLine()

        ' Create a ManualReset EventWaitHandle.
        '
        ewh = New EventWaitHandle(False, EventResetMode.ManualReset)

        ' Create and start five more numbered threads.
        '
        For i As Integer = 0 To 4
            Dim t As New Thread(AddressOf ThreadProc)
            t.Start(i)
        Next i

        ' Wait until all the threads have started and blocked.
        '
        While Interlocked.Read(threadCount) < 5
            Thread.Sleep(500)
        End While

        ' Because the EventWaitHandle was created with
        ' ManualReset mode, signaling it releases all the
        ' waiting threads.
        '
        Console.WriteLine("Press ENTER to release the waiting threads.")
        Console.ReadLine()
        ewh.Set()
        
    End Sub

    Public Shared Sub ThreadProc(ByVal data As Object)
        Dim index As Integer = CInt(data)

        Console.WriteLine("Thread {0} blocks.", data)
        ' Increment the count of blocked threads.
        Interlocked.Increment(threadCount)

        ' Wait on the EventWaitHandle.
        ewh.WaitOne()

        Console.WriteLine("Thread {0} exits.", data)
        ' Decrement the count of blocked threads.
        Interlocked.Decrement(threadCount)

        ' After signaling ewh, the main thread blocks on
        ' clearCount until the signaled thread has 
        ' decremented the count. Signal it now.
        '
        clearCount.Set()
    End Sub
End Class

Hinweise

Dieser Vorgang ist nicht garantiert atomisch. Nachdem der aktuelle Thread signalisiert toSignal , aber bevor er wartet, toWaitOnkann ein Thread, der auf einem anderen Prozessor ausgeführt wird, signalisieren toWaitOn oder warten.

Gilt für:

SignalAndWait(WaitHandle, WaitHandle, Int32, Boolean)

Quelle:
WaitHandle.cs
Quelle:
WaitHandle.cs
Quelle:
WaitHandle.cs

Signalisiert ein WaitHandle und wartet auf ein weiteres, wobei ein Timeoutintervall als 32-Bit-Ganzzahl mit Vorzeichen angegeben und festgelegt wird, ob die Synchronisierungsdomäne des Kontexts vor dem Wartevorgang verlassen werden soll.

public:
 static bool SignalAndWait(System::Threading::WaitHandle ^ toSignal, System::Threading::WaitHandle ^ toWaitOn, int millisecondsTimeout, bool exitContext);
public static bool SignalAndWait (System.Threading.WaitHandle toSignal, System.Threading.WaitHandle toWaitOn, int millisecondsTimeout, bool exitContext);
static member SignalAndWait : System.Threading.WaitHandle * System.Threading.WaitHandle * int * bool -> bool
Public Shared Function SignalAndWait (toSignal As WaitHandle, toWaitOn As WaitHandle, millisecondsTimeout As Integer, exitContext As Boolean) As Boolean

Parameter

toSignal
WaitHandle

Das zu signalisierende WaitHandle.

toWaitOn
WaitHandle

Das WaitHandle, auf das gewartet werden soll.

millisecondsTimeout
Int32

Eine Ganzzahl, die das Wartezeitintervall darstellt. Wenn der Wert Infinite (d. h. -1) ist, ist die Wartezeit unendlich.

exitContext
Boolean

true, um die Synchronisierungsdomäne für den Kontext vor dem Wartevorgang (sofern in einem synchronisierten Kontext) zu verlassen und diese anschließend erneut abzurufen, andernfalls false.

Gibt zurück

true, wenn das Signal und die Wartezeit erfolgreich abgeschlossen wurden, oder false, wenn das Signal abgeschlossen wurde, für die Wartezeit jedoch ein Timeout aufgetreten ist.

Ausnahmen

toSignal ist null.

- oder -

toWaitOn ist null.

Die Methode wird in einem Thread im Status STA aufgerufen.

Das WaitHandle kann nicht signalisiert werden, da dies die maximale Anzahl übersteigen würde.

millisecondsTimeout ist eine negative Zahl, jedoch nicht -1, was einen unbeschränkten Timeout darstellt.

Der Wartevorgang wird abgeschlossen, weil ein Thread beendet wurde, ohne ein Mutex freizugeben.

Hinweise

Dieser Vorgang ist nicht garantiert atomisch. Nachdem der aktuelle Thread signalisiert toSignal , aber bevor er wartet, toWaitOnkann ein Thread, der auf einem anderen Prozessor ausgeführt wird, signalisieren toWaitOn oder warten.

Wenn millisecondsTimeout null ist, wird die -Methode nicht blockiert. Es testet den Zustand des toWaitOn und gibt sofort zurück.

Beenden des Kontexts

Der exitContext -Parameter hat keine Auswirkung, es sei denn, diese Methode wird aus einem nicht standardmäßig verwalteten Kontext aufgerufen. Der verwaltete Kontext kann nicht standardmäßig sein, wenn sich Ihr Thread in einem Aufruf eines instance einer klasse befindet, die von ContextBoundObjectabgeleitet wird. Auch wenn Sie derzeit eine Methode für eine Klasse ausführen, die nicht von ContextBoundObjectabgeleitet ist, wie String, können Sie sich in einem nicht standardmäßigen Kontext befinden, wenn sich ein ContextBoundObject in Ihrem Stapel in der aktuellen Anwendungsdomäne befindet.

Wenn Ihr Code in einem nicht standardmäßigen Kontext ausgeführt wird, bewirkt die Angabe true von für exitContext , dass der Thread den nicht standardmäßig verwalteten Kontext beendet (d. h. zum Übergang in den Standardkontext), bevor diese Methode ausgeführt wird. Der Thread kehrt zum ursprünglichen nicht standardmäßigen Kontext zurück, nachdem der Aufruf dieser Methode abgeschlossen wurde.

Das Beenden des Kontexts kann nützlich sein, wenn die kontextgebundene Klasse über das SynchronizationAttribute -Attribut verfügt. In diesem Fall werden alle Aufrufe von Membern der -Klasse automatisch synchronisiert, und die Synchronisierungsdomäne ist der gesamte Codetext der Klasse. Wenn Code im Aufrufstapel eines Members diese Methode aufruft und für exitContextangibttrue, beendet der Thread die Synchronisierungsdomäne, sodass ein Thread, der bei einem Aufruf eines beliebigen Elements des -Objekts blockiert wird, fortfahren kann. Wenn diese Methode zurückgibt, muss der Thread, der den Aufruf ausgeführt hat, warten, um wieder in die Synchronisierungsdomäne zu wechseln.

Gilt für:

SignalAndWait(WaitHandle, WaitHandle, TimeSpan, Boolean)

Quelle:
WaitHandle.cs
Quelle:
WaitHandle.cs
Quelle:
WaitHandle.cs

Signalisiert ein WaitHandle und wartet auf ein weiteres, wobei das Timeoutintervall als TimeSpan angegeben und festgelegt wird, ob die Synchronisierungsdomäne des Kontexts vor dem Wartevorgang verlassen werden soll.

public:
 static bool SignalAndWait(System::Threading::WaitHandle ^ toSignal, System::Threading::WaitHandle ^ toWaitOn, TimeSpan timeout, bool exitContext);
public static bool SignalAndWait (System.Threading.WaitHandle toSignal, System.Threading.WaitHandle toWaitOn, TimeSpan timeout, bool exitContext);
static member SignalAndWait : System.Threading.WaitHandle * System.Threading.WaitHandle * TimeSpan * bool -> bool
Public Shared Function SignalAndWait (toSignal As WaitHandle, toWaitOn As WaitHandle, timeout As TimeSpan, exitContext As Boolean) As Boolean

Parameter

toSignal
WaitHandle

Das zu signalisierende WaitHandle.

toWaitOn
WaitHandle

Das WaitHandle, auf das gewartet werden soll.

timeout
TimeSpan

Ein TimeSpan-Wert, der das Wartezeitintervall darstellt. Wenn der Wert -1 ist, ist die Wartezeit unendlich.

exitContext
Boolean

true, um die Synchronisierungsdomäne für den Kontext vor dem Wartevorgang (sofern in einem synchronisierten Kontext) zu verlassen und diese anschließend erneut abzurufen, andernfalls false.

Gibt zurück

true, wenn das Signal und die Wartezeit erfolgreich abgeschlossen wurden, oder false, wenn das Signal abgeschlossen wurde, für die Wartezeit jedoch ein Timeout aufgetreten ist.

Ausnahmen

toSignal ist null.

- oder -

toWaitOn ist null.

Die Methode wurde in einem Thread im Status STA aufgerufen.

toSignal ist ein Semaphor, und die maximale Anzahl ist bereits erreicht.

timeout ergibt eine negative Anzahl von Millisekunden ungleich -1.

- oder -

timeout ist größer als Int32.MaxValue.

Der Wartevorgang wird abgeschlossen, weil ein Thread beendet wurde, ohne ein Mutex freizugeben.

Hinweise

Dieser Vorgang ist nicht garantiert atomisch. Nachdem der aktuelle Thread signalisiert toSignal , aber bevor er wartet, toWaitOnkann ein Thread, der auf einem anderen Prozessor ausgeführt wird, signalisieren toWaitOn oder warten.

Der Maximalwert für timeout ist Int32.MaxValue.

Wenn timeout null ist, wird die -Methode nicht blockiert. Es testet den Zustand des toWaitOn und gibt sofort zurück.

Beenden des Kontexts

Der exitContext -Parameter hat keine Auswirkung, es sei denn, diese Methode wird aus einem nicht standardmäßig verwalteten Kontext aufgerufen. Der verwaltete Kontext kann nicht standardmäßig sein, wenn sich Ihr Thread in einem Aufruf eines instance einer klasse befindet, die von ContextBoundObjectabgeleitet wird. Auch wenn Sie derzeit eine Methode für eine Klasse ausführen, die nicht von ContextBoundObjectabgeleitet ist, wie String, können Sie sich in einem nicht standardmäßigen Kontext befinden, wenn sich ein ContextBoundObject in Ihrem Stapel in der aktuellen Anwendungsdomäne befindet.

Wenn Ihr Code in einem nicht standardmäßigen Kontext ausgeführt wird, bewirkt die Angabe true von für exitContext , dass der Thread den nicht standardmäßig verwalteten Kontext beendet (d. h. zum Übergang in den Standardkontext), bevor diese Methode ausgeführt wird. Der Thread kehrt zum ursprünglichen nicht standardmäßigen Kontext zurück, nachdem der Aufruf dieser Methode abgeschlossen wurde.

Das Beenden des Kontexts kann nützlich sein, wenn die kontextgebundene Klasse über das SynchronizationAttribute -Attribut verfügt. In diesem Fall werden alle Aufrufe von Membern der -Klasse automatisch synchronisiert, und die Synchronisierungsdomäne ist der gesamte Codetext der Klasse. Wenn Code im Aufrufstapel eines Members diese Methode aufruft und für exitContextangibttrue, beendet der Thread die Synchronisierungsdomäne, sodass ein Thread, der bei einem Aufruf eines beliebigen Elements des -Objekts blockiert wird, fortfahren kann. Wenn diese Methode zurückgibt, muss der Thread, der den Aufruf ausgeführt hat, warten, um wieder in die Synchronisierungsdomäne zu wechseln.

Gilt für: