GamRegressionTrainer.Options Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Options for the GamRegressionTrainer as used in Gam(Options).
public class GamRegressionTrainer.Options : Microsoft.ML.Trainers.FastTree.GamTrainerBase<Microsoft.ML.Trainers.FastTree.GamRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.GamRegressionModelParameters>,Microsoft.ML.Trainers.FastTree.GamRegressionModelParameters>.OptionsBase
type GamRegressionTrainer.Options = class
inherit GamTrainerBase<GamRegressionTrainer.Options, RegressionPredictionTransformer<GamRegressionModelParameters>, GamRegressionModelParameters>.OptionsBase
Public Class GamRegressionTrainer.Options
Inherits GamTrainerBase(Of GamRegressionTrainer.Options, RegressionPredictionTransformer(Of GamRegressionModelParameters), GamRegressionModelParameters).OptionsBase
- Inheritance
Constructors
GamRegressionTrainer.Options() |
Fields
DiskTranspose |
Whether to utilize the disk or the data's native transposition facilities (where applicable) when performing the transpose. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
EnablePruning |
Enable post-training tree pruning to avoid overfitting. It requires a validation set. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
EntropyCoefficient |
The entropy (regularization) coefficient between 0 and 1. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
ExampleWeightColumnName |
Column to use for example weight. (Inherited from TrainerInputBaseWithWeight) |
FeatureColumnName |
Column to use for features. (Inherited from TrainerInputBase) |
FeatureFlocks |
Whether to collectivize features during dataset preparation to speed up training. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
GainConfidenceLevel |
Tree fitting gain confidence requirement. Only consider a gain if its likelihood versus a random choice gain is above this value. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
GetDerivativesSampleRate |
Sample each query 1 in k times in the GetDerivatives function. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
LabelColumnName |
Column to use for labels. (Inherited from TrainerInputBaseWithLabel) |
LearningRate |
The learning rate. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
MaximumBinCountPerFeature |
The maximum number of distinct values (bins) per feature. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
MaximumTreeOutput |
The upper bound on the absolute value of a single tree output. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
MinimumExampleCountPerLeaf |
The minimal number of data points required to form a new tree leaf. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
NumberOfIterations |
Total number of passes over the training data. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
NumberOfThreads |
The number of threads to use. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |
PruningMetrics |
Determines what metric to use for pruning. |
Seed |
The seed of the random number generator. (Inherited from GamTrainerBase<TOptions,TTransformer,TPredictor>.OptionsBase) |