Math.Log Méthode

Définition

Retourne le logarithme d'un nombre spécifié.

Surcharges

Log(Double, Double)

Retourne le logarithme d'un nombre spécifié dans une base spécifiée.

Log(Double)

Retourne le logarithme naturel (base e) d'un nombre spécifié.

Log(Double, Double)

Source:
Math.cs
Source:
Math.cs
Source:
Math.cs

Retourne le logarithme d'un nombre spécifié dans une base spécifiée.

public:
 static double Log(double a, double newBase);
public static double Log (double a, double newBase);
static member Log : double * double -> double
Public Shared Function Log (a As Double, newBase As Double) As Double

Paramètres

a
Double

Nombre dont le logarithme doit être recherché.

newBase
Double

Base du logarithme.

Retours

Une des valeurs du tableau suivant. (+Infini indique PositiveInfinity, -Infini indique NegativeInfinity et NaN indique NaN.)

anewBase Valeur de retour
a > 0 (0 <newBase< 1) -or- (newBase> 1) lognewBase(a)
a < 0 (toute valeur) NaN
(toute valeur) newBase < 0 NaN
a != 1 newBase = 0 NaN
a != 1 newBase = +Infinity NaN
a = NaN (toute valeur) NaN
(toute valeur) newBase = NaN NaN
(toute valeur) newBase = 1 NaN
a = 0 0 <newBase< 1 +Infini
a = 0 newBase > 1 -Infini
a = +Infinity 0 <newBase< 1 -Infini
a = +Infinity newBase > 1 +Infini
a = 1 newBase = 0 0
a = 1 newBase = +Infinity 0

Exemples

L’exemple suivant utilise Log pour évaluer certaines identités logarithmiques pour les valeurs sélectionnées.

// Example for the Math::Log( double ) and Math::Log( double, double ) methods.
using namespace System;

// Evaluate logarithmic identities that are functions of two arguments.
void UseBaseAndArg( double argB, double argX )
{
   
   // Evaluate log(B)[X] == 1 / log(X)[B].
   Console::WriteLine( "\n                     Math::Log({1}, {0}) == {2:E16}"
   "\n               1.0 / Math::Log({0}, {1}) == {3:E16}", argB, argX, Math::Log( argX, argB ), 1.0 / Math::Log( argB, argX ) );
   
   // Evaluate log(B)[X] == ln[X] / ln[B].
   Console::WriteLine( "         Math::Log({1}) / Math::Log({0}) == {2:E16}", argB, argX, Math::Log( argX ) / Math::Log( argB ) );
   
   // Evaluate log(B)[X] == log(B)[e] * ln[X].
   Console::WriteLine( "Math::Log(Math::E, {0}) * Math::Log({1}) == {2:E16}", argB, argX, Math::Log( Math::E, argB ) * Math::Log( argX ) );
}

void main()
{
   Console::WriteLine( "This example of Math::Log( double ) and "
   "Math::Log( double, double )\n"
   "generates the following output.\n" );
   Console::WriteLine( "Evaluate these identities with "
   "selected values for X and B (base):" );
   Console::WriteLine( "   log(B)[X] == 1 / log(X)[B]" );
   Console::WriteLine( "   log(B)[X] == ln[X] / ln[B]" );
   Console::WriteLine( "   log(B)[X] == log(B)[e] * ln[X]" );
   UseBaseAndArg( 0.1, 1.2 );
   UseBaseAndArg( 1.2, 4.9 );
   UseBaseAndArg( 4.9, 9.9 );
   UseBaseAndArg( 9.9, 0.1 );
}

/*
This example of Math::Log( double ) and Math::Log( double, double )
generates the following output.

Evaluate these identities with selected values for X and B (base):
   log(B)[X] == 1 / log(X)[B]
   log(B)[X] == ln[X] / ln[B]
   log(B)[X] == log(B)[e] * ln[X]

                     Math::Log(1.2, 0.1) == -7.9181246047624818E-002
               1.0 / Math::Log(0.1, 1.2) == -7.9181246047624818E-002
         Math::Log(1.2) / Math::Log(0.1) == -7.9181246047624818E-002
Math::Log(Math::E, 0.1) * Math::Log(1.2) == -7.9181246047624804E-002

                     Math::Log(4.9, 1.2) == 8.7166610085093179E+000
               1.0 / Math::Log(1.2, 4.9) == 8.7166610085093161E+000
         Math::Log(4.9) / Math::Log(1.2) == 8.7166610085093179E+000
Math::Log(Math::E, 1.2) * Math::Log(4.9) == 8.7166610085093179E+000

                     Math::Log(9.9, 4.9) == 1.4425396251981288E+000
               1.0 / Math::Log(4.9, 9.9) == 1.4425396251981288E+000
         Math::Log(9.9) / Math::Log(4.9) == 1.4425396251981288E+000
Math::Log(Math::E, 4.9) * Math::Log(9.9) == 1.4425396251981288E+000

                     Math::Log(0.1, 9.9) == -1.0043839404494075E+000
               1.0 / Math::Log(9.9, 0.1) == -1.0043839404494075E+000
         Math::Log(0.1) / Math::Log(9.9) == -1.0043839404494075E+000
Math::Log(Math::E, 9.9) * Math::Log(0.1) == -1.0043839404494077E+000
*/
// Example for the Math.Log( double ) and Math.Log( double, double ) methods.
using System;

class LogDLogDD
{
    public static void Main()
    {
        Console.WriteLine(
            "This example of Math.Log( double ) and " +
            "Math.Log( double, double )\n" +
            "generates the following output.\n" );
        Console.WriteLine(
            "Evaluate these identities with " +
            "selected values for X and B (base):" );
        Console.WriteLine( "   log(B)[X] == 1 / log(X)[B]" );
        Console.WriteLine( "   log(B)[X] == ln[X] / ln[B]" );
        Console.WriteLine( "   log(B)[X] == log(B)[e] * ln[X]" );

        UseBaseAndArg(0.1, 1.2);
        UseBaseAndArg(1.2, 4.9);
        UseBaseAndArg(4.9, 9.9);
        UseBaseAndArg(9.9, 0.1);
    }

    // Evaluate logarithmic identities that are functions of two arguments.
    static void UseBaseAndArg(double argB, double argX)
    {
        // Evaluate log(B)[X] == 1 / log(X)[B].
        Console.WriteLine(
            "\n                   Math.Log({1}, {0}) == {2:E16}" +
            "\n             1.0 / Math.Log({0}, {1}) == {3:E16}",
            argB, argX, Math.Log(argX, argB),
            1.0 / Math.Log(argB, argX) );

        // Evaluate log(B)[X] == ln[X] / ln[B].
        Console.WriteLine(
            "        Math.Log({1}) / Math.Log({0}) == {2:E16}",
            argB, argX, Math.Log(argX) / Math.Log(argB) );

        // Evaluate log(B)[X] == log(B)[e] * ln[X].
        Console.WriteLine(
            "Math.Log(Math.E, {0}) * Math.Log({1}) == {2:E16}",
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX) );
    }
}

/*
This example of Math.Log( double ) and Math.Log( double, double )
generates the following output.

Evaluate these identities with selected values for X and B (base):
   log(B)[X] == 1 / log(X)[B]
   log(B)[X] == ln[X] / ln[B]
   log(B)[X] == log(B)[e] * ln[X]

                   Math.Log(1.2, 0.1) == -7.9181246047624818E-002
             1.0 / Math.Log(0.1, 1.2) == -7.9181246047624818E-002
        Math.Log(1.2) / Math.Log(0.1) == -7.9181246047624818E-002
Math.Log(Math.E, 0.1) * Math.Log(1.2) == -7.9181246047624804E-002

                   Math.Log(4.9, 1.2) == 8.7166610085093179E+000
             1.0 / Math.Log(1.2, 4.9) == 8.7166610085093161E+000
        Math.Log(4.9) / Math.Log(1.2) == 8.7166610085093179E+000
Math.Log(Math.E, 1.2) * Math.Log(4.9) == 8.7166610085093179E+000

                   Math.Log(9.9, 4.9) == 1.4425396251981288E+000
             1.0 / Math.Log(4.9, 9.9) == 1.4425396251981288E+000
        Math.Log(9.9) / Math.Log(4.9) == 1.4425396251981288E+000
Math.Log(Math.E, 4.9) * Math.Log(9.9) == 1.4425396251981288E+000

                   Math.Log(0.1, 9.9) == -1.0043839404494075E+000
             1.0 / Math.Log(9.9, 0.1) == -1.0043839404494075E+000
        Math.Log(0.1) / Math.Log(9.9) == -1.0043839404494075E+000
Math.Log(Math.E, 9.9) * Math.Log(0.1) == -1.0043839404494077E+000
*/
// Example for the Math.Log( double ) and Math.Log( double, double ) methods.
open System

// Evaluate logarithmic identities that are functions of two arguments.
let useBaseAndArg argB argX =
    // Evaluate log(B)[X] == 1 / log(X)[B].
    printfn $"""
                   Math.Log({argX}, {argB}) == {Math.Log(argX, argB):E16}
             1.0 / Math.Log({argB}, {argX}) == {1. / Math.Log(argB, argX):E16}"""

    // Evaluate log(B)[X] == ln[X] / ln[B].
    printfn $"        Math.Log({argX}) / Math.Log({argB}) == {Math.Log argX / Math.Log argB:E16}"

    // Evaluate log(B)[X] == log(B)[e] * ln[X].
    printfn $"Math.Log(Math.E, {argB}) * Math.Log({argX}) == {Math.Log(Math.E, argB) * Math.Log argX:E16}"


printfn
    """This example of Math.Log( double ) and Math.Log( double, double )
generates the following output.

printfn "Evaluate these identities with selected values for X and B (base):"""
printfn "   log(B)[X] == 1 / log(X)[B]"
printfn "   log(B)[X] == ln[X] / ln[B]" 
printfn "   log(B)[X] == log(B)[e] * ln[X]" 

useBaseAndArg 0.1 1.2
useBaseAndArg 1.2 4.9
useBaseAndArg 4.9 9.9
useBaseAndArg 9.9 0.1


// This example of Math.Log( double ) and Math.Log( double, double )
// generates the following output.
//
// Evaluate these identities with selected values for X and B (base):
//    log(B)[X] == 1 / log(X)[B]
//    log(B)[X] == ln[X] / ln[B]
//    log(B)[X] == log(B)[e] * ln[X]
//
//                    Math.Log(1.2, 0.1) == -7.9181246047624818E-002
//              1.0 / Math.Log(0.1, 1.2) == -7.9181246047624818E-002
//         Math.Log(1.2) / Math.Log(0.1) == -7.9181246047624818E-002
// Math.Log(Math.E, 0.1) * Math.Log(1.2) == -7.9181246047624804E-002
//
//                    Math.Log(4.9, 1.2) == 8.7166610085093179E+000
//              1.0 / Math.Log(1.2, 4.9) == 8.7166610085093161E+000
//         Math.Log(4.9) / Math.Log(1.2) == 8.7166610085093179E+000
// Math.Log(Math.E, 1.2) * Math.Log(4.9) == 8.7166610085093179E+000
//
//                    Math.Log(9.9, 4.9) == 1.4425396251981288E+000
//              1.0 / Math.Log(4.9, 9.9) == 1.4425396251981288E+000
//         Math.Log(9.9) / Math.Log(4.9) == 1.4425396251981288E+000
// Math.Log(Math.E, 4.9) * Math.Log(9.9) == 1.4425396251981288E+000
//
//                    Math.Log(0.1, 9.9) == -1.0043839404494075E+000
//              1.0 / Math.Log(9.9, 0.1) == -1.0043839404494075E+000
//         Math.Log(0.1) / Math.Log(9.9) == -1.0043839404494075E+000
// Math.Log(Math.E, 9.9) * Math.Log(0.1) == -1.0043839404494077E+000
' Example for the Math.Log( Double ) and Math.Log( Double, Double ) methods.
Module LogDLogDD
   
    Sub Main()
        Console.WriteLine( _
            "This example of Math.Log( Double ) and " + _
            "Math.Log( Double, Double )" & vbCrLf & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Evaluate these identities with selected " & _
            "values for X and B (base):")
        Console.WriteLine("   log(B)[X] = 1 / log(X)[B]")
        Console.WriteLine("   log(B)[X] = ln[X] / ln[B]")
        Console.WriteLine("   log(B)[X] = log(B)[e] * ln[X]")
          
        UseBaseAndArg(0.1, 1.2)
        UseBaseAndArg(1.2, 4.9)
        UseBaseAndArg(4.9, 9.9)
        UseBaseAndArg(9.9, 0.1)
    End Sub
       
    ' Evaluate logarithmic identities that are functions of two arguments.
    Sub UseBaseAndArg(argB As Double, argX As Double)

        ' Evaluate log(B)[X] = 1 / log(X)[B].
        Console.WriteLine( _
            vbCrLf & "                   Math.Log({1}, {0}) = {2:E16}" + _
            vbCrLf & "             1.0 / Math.Log({0}, {1}) = {3:E16}", _
            argB, argX, Math.Log(argX, argB), _
            1.0 / Math.Log(argB, argX))
          
        ' Evaluate log(B)[X] = ln[X] / ln[B].
        Console.WriteLine( _
            "        Math.Log({1}) / Math.Log({0}) = {2:E16}", _
            argB, argX, Math.Log(argX) / Math.Log(argB))
          
        ' Evaluate log(B)[X] = log(B)[e] * ln[X].
        Console.WriteLine( _
            "Math.Log(Math.E, {0}) * Math.Log({1}) = {2:E16}", _
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX))

    End Sub
End Module 'LogDLogDD

' This example of Math.Log( Double ) and Math.Log( Double, Double )
' generates the following output.
' 
' Evaluate these identities with selected values for X and B (base):
'    log(B)[X] = 1 / log(X)[B]
'    log(B)[X] = ln[X] / ln[B]
'    log(B)[X] = log(B)[e] * ln[X]
' 
'                    Math.Log(1.2, 0.1) = -7.9181246047624818E-002
'              1.0 / Math.Log(0.1, 1.2) = -7.9181246047624818E-002
'         Math.Log(1.2) / Math.Log(0.1) = -7.9181246047624818E-002
' Math.Log(Math.E, 0.1) * Math.Log(1.2) = -7.9181246047624804E-002
' 
'                    Math.Log(4.9, 1.2) = 8.7166610085093179E+000
'              1.0 / Math.Log(1.2, 4.9) = 8.7166610085093161E+000
'         Math.Log(4.9) / Math.Log(1.2) = 8.7166610085093179E+000
' Math.Log(Math.E, 1.2) * Math.Log(4.9) = 8.7166610085093179E+000
' 
'                    Math.Log(9.9, 4.9) = 1.4425396251981288E+000
'              1.0 / Math.Log(4.9, 9.9) = 1.4425396251981288E+000
'         Math.Log(9.9) / Math.Log(4.9) = 1.4425396251981288E+000
' Math.Log(Math.E, 4.9) * Math.Log(9.9) = 1.4425396251981288E+000
' 
'                    Math.Log(0.1, 9.9) = -1.0043839404494075E+000
'              1.0 / Math.Log(9.9, 0.1) = -1.0043839404494075E+000
'         Math.Log(0.1) / Math.Log(9.9) = -1.0043839404494075E+000
' Math.Log(Math.E, 9.9) * Math.Log(0.1) = -1.0043839404494077E+000

Remarques

Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.

S’applique à

Log(Double)

Source:
Math.cs
Source:
Math.cs
Source:
Math.cs

Retourne le logarithme naturel (base e) d'un nombre spécifié.

public:
 static double Log(double d);
public static double Log (double d);
static member Log : double -> double
Public Shared Function Log (d As Double) As Double

Paramètres

d
Double

Nombre dont le logarithme doit être recherché.

Retours

Une des valeurs du tableau suivant.

Paramètre d Valeur de retour
Positif Logarithme naturel de d, à savoir ln d ou log e d
ZéroNegativeInfinity
NégatifNaN
Égal à NaNNaN
Égal à PositiveInfinityPositiveInfinity

Exemples

L’exemple suivant illustre la Log méthode .

using System;
public class Example
{
   public static void Main()
   {
      Console.WriteLine("  Evaluate this identity with selected values for X:");
      Console.WriteLine("                              ln(x) = 1 / log[X](B)");
      Console.WriteLine();

      double[] XArgs = { 1.2, 4.9, 9.9, 0.1 };

      foreach (double argX in XArgs)
      {
         // Find natural log of argX.
         Console.WriteLine("                      Math.Log({0}) = {1:E16}",
                           argX, Math.Log(argX));

         // Evaluate 1 / log[X](e).
         Console.WriteLine("             1.0 / Math.Log(e, {0}) = {1:E16}",
                           argX, 1.0 / Math.Log(Math.E, argX));
         Console.WriteLine();
      }
   }
}
// This example displays the following output:
//         Evaluate this identity with selected values for X:
//                                     ln(x) = 1 / log[X](B)
//
//                             Math.Log(1.2) = 1.8232155679395459E-001
//                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
//
//                             Math.Log(4.9) = 1.5892352051165810E+000
//                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
//
//                             Math.Log(9.9) = 2.2925347571405443E+000
//                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
//
//                             Math.Log(0.1) = -2.3025850929940455E+000
//                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000
open System

printfn "  Evaluate this identity with selected values for X:"
printfn "                              ln(x) = 1 / log[X](B)\n"

let XArgs = [| 1.2; 4.9; 9.9; 0.1 |]

for argX in XArgs do
    // Find natural log of argX.
    // The F# log function may be used instead
    printfn $"                      Math.Log({argX}) = {Math.Log argX:E16}"

    // Evaluate 1 / log[X](e).
    printfn $"             1.0 / Math.Log(e, {argX}) = {1. / Math.Log(Math.E, argX):E16}\n"

// This example displays the following output:
//         Evaluate this identity with selected values for X:
//                                     ln(x) = 1 / log[X](B)
//
//                             Math.Log(1.2) = 1.8232155679395459E-001
//                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
//
//                             Math.Log(4.9) = 1.5892352051165810E+000
//                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
//
//                             Math.Log(9.9) = 2.2925347571405443E+000
//                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
//
//                             Math.Log(0.1) = -2.3025850929940455E+000
//                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000
Module Example
   Sub Main()
      Console.WriteLine( _
         "  Evaluate this identity with selected values for X:")
      Console.WriteLine("                              ln(x) = 1 / log[X](B)")
      Console.WriteLine()
          
      Dim XArgs() As Double = { 1.2, 4.9, 9.9, 0.1 }
   
      For Each argX As Double In XArgs
         ' Find natural log of argX.
         Console.WriteLine("                      Math.Log({0}) = {1:E16}", _
                           argX, Math.Log(argX))

         ' Evaluate 1 / log[X](e).
         Console.WriteLine("             1.0 / Math.Log(e, {0}) = {1:E16}", _
                           argX, 1.0 / Math.Log(Math.E, argX))
         Console.WriteLine()
      Next
   End Sub 
End Module
' This example displays the following output:
'         Evaluate this identity with selected values for X:
'                                     ln(x) = 1 / log[X](B)
'       
'                             Math.Log(1.2) = 1.8232155679395459E-001
'                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
'       
'                             Math.Log(4.9) = 1.5892352051165810E+000
'                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
'       
'                             Math.Log(9.9) = 2.2925347571405443E+000
'                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
'       
'                             Math.Log(0.1) = -2.3025850929940455E+000
'                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000

Remarques

Le paramètre d est spécifié en tant que nombre de base 10.

Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.

Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.

Voir aussi

S’applique à