BinaryClassificationCatalog.CalibratorsCatalog.Platt Metodo

Definizione

Overload

Platt(Double, Double, String)

Aggiunge la colonna di probabilità specificando il calibratore platt.

Platt(String, String, String)

Aggiunge la colonna probabilità eseguendo il training del calibratore platt.

Platt(Double, Double, String)

Aggiunge la colonna di probabilità specificando il calibratore platt.

public Microsoft.ML.Calibrators.FixedPlattCalibratorEstimator Platt (double slope, double offset, string scoreColumnName = "Score");
member this.Platt : double * double * string -> Microsoft.ML.Calibrators.FixedPlattCalibratorEstimator
Public Function Platt (slope As Double, offset As Double, Optional scoreColumnName As String = "Score") As FixedPlattCalibratorEstimator

Parametri

slope
Double

Pendenza nella funzione dell'esponente del sigmoid.

offset
Double

Offset nella funzione dell'esponente del sigmoid.

scoreColumnName
String

Nome della colonna punteggio.

Restituisce

Esempio

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.BinaryClassification.Calibrators
{
    public static class FixedPlatt
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Download and featurize the dataset.
            var data = Microsoft.ML.SamplesUtils.DatasetUtils
                .LoadFeaturizedAdultDataset(mlContext);

            // Leave out 10% of data for testing.
            var trainTestData = mlContext.Data
                .TrainTestSplit(data, testFraction: 0.3);

            // Create data training pipeline for non calibrated trainer and train
            // Naive calibrator on top of it.
            var pipeline = mlContext.BinaryClassification.Trainers
                .AveragedPerceptron();

            // Fit the pipeline, and get a transformer that knows how to score new
            // data.
            var transformer = pipeline.Fit(trainTestData.TrainSet);
            // Fit this pipeline to the training data.
            // Let's score the new data. The score will give us a numerical
            // estimation of the chance that the particular sample bears positive
            // sentiment. This estimate is relative to the numbers obtained.
            var scoredData = transformer.Transform(trainTestData.TestSet);
            var outScores = mlContext.Data
                .CreateEnumerable<ScoreValue>(scoredData, reuseRowObject: false);

            PrintScore(outScores, 5);
            // Preview of scoredDataPreview.RowView
            // Score  -0.09044361
            // Score  -9.105377
            // Score  -11.049
            // Score  -3.061928
            // Score  -6.375817

            // Let's train a calibrator estimator on this scored dataset. The
            // trained calibrator estimator produces a transformer that can
            // transform the scored data by adding a new column names "Probability".
            var calibratorEstimator = mlContext.BinaryClassification.Calibrators
                .Platt(slope: -1f, offset: -0.05f);

            var calibratorTransformer = calibratorEstimator.Fit(scoredData);

            // Transform the scored data with a calibrator transfomer by adding a
            // new column names "Probability". This column is a calibrated version
            // of the "Score" column, meaning its values are a valid probability
            // value in the [0, 1] interval representing the chance that the
            // respective sample bears positive sentiment.
            var finalData = calibratorTransformer.Transform(scoredData);
            var outScoresAndProbabilities = mlContext.Data
                .CreateEnumerable<ScoreAndProbabilityValue>(finalData,
                reuseRowObject: false);

            PrintScoreAndProbability(outScoresAndProbabilities, 5);
            // Score -0.09044361  Probability 0.4898905
            // Score -9.105377    Probability 0.0001167479
            // Score -11.049      Probability 1.671815E-05
            // Score -3.061928    Probability 0.04688989
            // Score -6.375817    Probability 0.001786307
        }

        private static void PrintScore(IEnumerable<ScoreValue> values, int numRows)
        {
            foreach (var value in values.Take(numRows))
                Console.WriteLine("{0, -10} {1, -10}", "Score", value.Score);
        }

        private static void PrintScoreAndProbability(
            IEnumerable<ScoreAndProbabilityValue> values, int numRows)

        {
            foreach (var value in values.Take(numRows))
                Console.WriteLine("{0, -10} {1, -10} {2, -10} {3, -10}", "Score",
                    value.Score, "Probability", value.Probability);
        }

        private class ScoreValue
        {
            public float Score { get; set; }
        }

        private class ScoreAndProbabilityValue
        {
            public float Score { get; set; }
            public float Probability { get; set; }
        }
    }
}

Si applica a

Platt(String, String, String)

Aggiunge la colonna probabilità eseguendo il training del calibratore platt.

public Microsoft.ML.Calibrators.PlattCalibratorEstimator Platt (string labelColumnName = "Label", string scoreColumnName = "Score", string exampleWeightColumnName = default);
member this.Platt : string * string * string -> Microsoft.ML.Calibrators.PlattCalibratorEstimator
Public Function Platt (Optional labelColumnName As String = "Label", Optional scoreColumnName As String = "Score", Optional exampleWeightColumnName As String = Nothing) As PlattCalibratorEstimator

Parametri

labelColumnName
String

Nome della colonna etichetta.

scoreColumnName
String

Nome della colonna punteggio.

exampleWeightColumnName
String

Nome della colonna di peso di esempio (facoltativo).

Restituisce

Esempio

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;

namespace Samples.Dynamic.Trainers.BinaryClassification.Calibrators
{
    public static class Platt
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Download and featurize the dataset.
            var data = Microsoft.ML.SamplesUtils.DatasetUtils
                .LoadFeaturizedAdultDataset(mlContext);

            // Leave out 10% of data for testing.
            var trainTestData = mlContext.Data
                .TrainTestSplit(data, testFraction: 0.3);

            // Create data training pipeline for non calibrated trainer and train
            // Naive calibrator on top of it.
            var pipeline = mlContext.BinaryClassification.Trainers
                .AveragedPerceptron();

            // Fit the pipeline, and get a transformer that knows how to score new
            // data.
            var transformer = pipeline.Fit(trainTestData.TrainSet);
            // Fit this pipeline to the training data.
            // Let's score the new data. The score will give us a numerical
            // estimation of the chance that the particular sample bears positive
            // sentiment. This estimate is relative to the numbers obtained.
            var scoredData = transformer.Transform(trainTestData.TestSet);
            var outScores = mlContext.Data
                .CreateEnumerable<ScoreValue>(scoredData, reuseRowObject: false);

            PrintScore(outScores, 5);
            // Preview of scoredDataPreview.RowView
            // Score  -0.09044361
            // Score  -9.105377
            // Score  -11.049
            // Score  -3.061928
            // Score  -6.375817

            // Let's train a calibrator estimator on this scored dataset. The
            // trained calibrator estimator produces a transformer that can
            // transform the scored data by adding a new column names "Probability".
            var calibratorEstimator = mlContext.BinaryClassification.Calibrators
                .Platt();

            var calibratorTransformer = calibratorEstimator.Fit(scoredData);

            // Transform the scored data with a calibrator transfomer by adding a
            // new column names "Probability". This column is a calibrated version
            // of the "Score" column, meaning its values are a valid probability
            // value in the [0, 1] interval representing the chance that the
            // respective sample bears positive sentiment.
            var finalData = calibratorTransformer.Transform(scoredData);
            var outScoresAndProbabilities = mlContext.Data
                .CreateEnumerable<ScoreAndProbabilityValue>(finalData,
                reuseRowObject: false);

            PrintScoreAndProbability(outScoresAndProbabilities, 5);
            // Score -0.09044361  Probability 0.423026
            // Score -9.105377    Probability 0.02139676
            // Score -11.049      Probability 0.01014891
            // Score -3.061928    Probability 0.1872233
            // Score -6.375817    Probability 0.05956031
        }

        private static void PrintScore(IEnumerable<ScoreValue> values, int numRows)
        {
            foreach (var value in values.Take(numRows))
                Console.WriteLine("{0, -10} {1, -10}", "Score", value.Score);
        }

        private static void PrintScoreAndProbability(
            IEnumerable<ScoreAndProbabilityValue> values, int numRows)

        {
            foreach (var value in values.Take(numRows))
                Console.WriteLine("{0, -10} {1, -10} {2, -10} {3, -10}", "Score",
                    value.Score, "Probability", value.Probability);

        }

        private class ScoreValue
        {
            public float Score { get; set; }
        }

        private class ScoreAndProbabilityValue
        {
            public float Score { get; set; }
            public float Probability { get; set; }
        }
    }
}

Si applica a