FastForestRegressionTrainer Classe

Definizione

Oggetto per il training di un modello di regressione dell'albero IEstimator<TTransformer> delle decisioni usando Fast Forest.

public sealed class FastForestRegressionTrainer : Microsoft.ML.Trainers.FastTree.RandomForestTrainerBase<Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastForestRegressionModelParameters>,Microsoft.ML.Trainers.FastTree.FastForestRegressionModelParameters>
type FastForestRegressionTrainer = class
    inherit RandomForestTrainerBase<FastForestRegressionTrainer.Options, RegressionPredictionTransformer<FastForestRegressionModelParameters>, FastForestRegressionModelParameters>
Public NotInheritable Class FastForestRegressionTrainer
Inherits RandomForestTrainerBase(Of FastForestRegressionTrainer.Options, RegressionPredictionTransformer(Of FastForestRegressionModelParameters), FastForestRegressionModelParameters)
Ereditarietà

Commenti

Per creare questo formatore, usare FastForest o FastForest(Options).

Colonne di input e output

I dati della colonna dell'etichetta di input devono essere Single. I dati delle colonne delle funzionalità di input devono essere un vettore di dimensioni note di Single.

Questo formatore restituisce le colonne seguenti:

Nome colonna di output Tipo di colonna Descrizione
Score Single Punteggio non associato stimato dal modello.

Caratteristiche del trainer

Attività di Machine Learning Regressione
È necessaria la normalizzazione? No
È necessaria la memorizzazione nella cache? No
NuGet richiesto oltre a Microsoft.ML Microsoft.ML.FastTree
Esportabile in ONNX

Dettagli dell'algoritmo di training

Gli alberi delle decisioni sono modelli non parametrici che eseguono una sequenza di test semplici sugli input. Questa procedura decisionale li esegue il mapping agli output trovati nel set di dati di training i cui input sono simili all'istanza in fase di elaborazione. Una decisione viene presa in ogni nodo della struttura di dati dell'albero binario in base a una misura di somiglianza che esegue il mapping ricorsivo di ogni istanza attraverso i rami dell'albero fino a quando non viene raggiunto il nodo foglia appropriato e la decisione di output restituita.

Gli alberi delle decisioni hanno diversi vantaggi:

  • Sono efficienti sia nel calcolo che nell'uso della memoria durante il training e la stima.
  • Possono rappresentare limiti di decisione non lineari.
  • Eseguono la selezione e la classificazione integrata di funzionalità
  • e sono resilienti in caso di funzionalità rumorose.

La foresta veloce è un'implementazione casuale della foresta. Il modello è costituito da un insieme di alberi decisionali. Ogni albero in una foresta decisionale restituisce una distribuzione gaussian in base alla stima. Un'aggregazione viene eseguita sull'insieme di alberi per trovare una distribuzione Gaussian più vicina alla distribuzione combinata per tutti gli alberi del modello. Il classificatore delle foreste delle decisioni è costituito da un insieme di alberi delle decisioni.

In genere, i modelli di insieme offrono una copertura e un'accuratezza migliori rispetto a singoli alberi delle decisioni. Ogni albero in una foresta decisionale restituisce una distribuzione Gaussian.

Per altre informazioni, vedere:

Controllare la sezione Vedere anche per i collegamenti ad esempi dell'utilizzo.

Campi

FeatureColumn

Colonna di funzionalità prevista dal trainer.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

Colonna groupID facoltativa prevista dal formatore di classificazione.

(Ereditato da TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

Colonna etichetta prevista dal trainer. Può essere null, che indica che l'etichetta non viene usata per il training.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Colonna di peso prevista dal trainer. Può essere null, che indica che il peso non viene usato per il training.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)

Proprietà

Info

Oggetto per il training di un modello di regressione dell'albero IEstimator<TTransformer> delle decisioni usando Fast Forest.

(Ereditato da FastTreeTrainerBase<TOptions,TTransformer,TModel>)

Metodi

Fit(IDataView, IDataView)

Esegue il training di un oggetto FastForestRegressionTrainer usando i dati di training e di convalida, restituisce un RegressionPredictionTransformer<TModel>oggetto .

Fit(IDataView)

Esegue il training e restituisce un ITransformeroggetto .

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Oggetto per il training di un modello di regressione dell'albero IEstimator<TTransformer> delle decisioni usando Fast Forest.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)

Metodi di estensione

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Aggiungere un "checkpoint di memorizzazione nella cache" alla catena di stima. Ciò garantisce che gli estimatori downstream vengano sottoposti a training sui dati memorizzati nella cache. È utile avere un checkpoint di memorizzazione nella cache prima dei training che accettano più passaggi di dati.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Dato un stimatore, restituire un oggetto wrapping che chiamerà un delegato una volta Fit(IDataView) chiamato. Spesso è importante che un stimatore restituisca informazioni su ciò che è stato adatto, che è il motivo per cui il Fit(IDataView) metodo restituisce un oggetto tipizzato in modo specifico, anziché solo un oggetto generale ITransformer. Tuttavia, allo stesso tempo, IEstimator<TTransformer> sono spesso formati in pipeline con molti oggetti, quindi potrebbe essere necessario creare una catena di stima tramite EstimatorChain<TLastTransformer> dove lo stimatore per cui si vuole ottenere il trasformatore è sepolto da qualche parte in questa catena. Per questo scenario, è possibile collegare questo metodo a un delegato che verrà chiamato una volta chiamato fit.

Si applica a

Vedi anche