Math.Log Metodo

Definizione

Restituisce il logaritmo del numero specificato.

Overload

Log(Double, Double)

Restituisce il logaritmo del numero specificato in una base specificata.

Log(Double)

Restituisce il logaritmo naturale (in base e) di un numero specificato.

Log(Double, Double)

Origine:
Math.cs
Origine:
Math.cs
Origine:
Math.cs

Restituisce il logaritmo del numero specificato in una base specificata.

public:
 static double Log(double a, double newBase);
public static double Log (double a, double newBase);
static member Log : double * double -> double
Public Shared Function Log (a As Double, newBase As Double) As Double

Parametri

a
Double

Numero di cui è necessario trovare il logaritmo.

newBase
Double

Base del logaritmo.

Restituisce

Uno dei valori della tabella seguente. (+Infinito indica PositiveInfinity, -Infinito indica NegativeInfinity e NaN indica NaN).

anewBase Valore restituito
a > 0 (0 <newBase< 1) -or- (newBase> 1) lognewBase(a)
a < 0 (qualsiasi valore) NaN
(qualsiasi valore) newBase < 0 NaN
a != 1 newBase = 0 NaN
a != 1 newBase = +Infinito NaN
a = NaN (qualsiasi valore) NaN
(qualsiasi valore) newBase = NaN NaN
(qualsiasi valore) newBase = 1 NaN
a = 0 0 <newBase< 1 +Infinito
a = 0 newBase > 1 -Infinito
a = +Infinito 0 <newBase< 1 -Infinito
a = +Infinito newBase > 1 +Infinito
a = 1 newBase = 0 0
a = 1 newBase = +Infinito 0

Esempio

Nell'esempio seguente viene Log usato per valutare determinate identità logaritmiche per i valori selezionati.

// Example for the Math::Log( double ) and Math::Log( double, double ) methods.
using namespace System;

// Evaluate logarithmic identities that are functions of two arguments.
void UseBaseAndArg( double argB, double argX )
{
   
   // Evaluate log(B)[X] == 1 / log(X)[B].
   Console::WriteLine( "\n                     Math::Log({1}, {0}) == {2:E16}"
   "\n               1.0 / Math::Log({0}, {1}) == {3:E16}", argB, argX, Math::Log( argX, argB ), 1.0 / Math::Log( argB, argX ) );
   
   // Evaluate log(B)[X] == ln[X] / ln[B].
   Console::WriteLine( "         Math::Log({1}) / Math::Log({0}) == {2:E16}", argB, argX, Math::Log( argX ) / Math::Log( argB ) );
   
   // Evaluate log(B)[X] == log(B)[e] * ln[X].
   Console::WriteLine( "Math::Log(Math::E, {0}) * Math::Log({1}) == {2:E16}", argB, argX, Math::Log( Math::E, argB ) * Math::Log( argX ) );
}

void main()
{
   Console::WriteLine( "This example of Math::Log( double ) and "
   "Math::Log( double, double )\n"
   "generates the following output.\n" );
   Console::WriteLine( "Evaluate these identities with "
   "selected values for X and B (base):" );
   Console::WriteLine( "   log(B)[X] == 1 / log(X)[B]" );
   Console::WriteLine( "   log(B)[X] == ln[X] / ln[B]" );
   Console::WriteLine( "   log(B)[X] == log(B)[e] * ln[X]" );
   UseBaseAndArg( 0.1, 1.2 );
   UseBaseAndArg( 1.2, 4.9 );
   UseBaseAndArg( 4.9, 9.9 );
   UseBaseAndArg( 9.9, 0.1 );
}

/*
This example of Math::Log( double ) and Math::Log( double, double )
generates the following output.

Evaluate these identities with selected values for X and B (base):
   log(B)[X] == 1 / log(X)[B]
   log(B)[X] == ln[X] / ln[B]
   log(B)[X] == log(B)[e] * ln[X]

                     Math::Log(1.2, 0.1) == -7.9181246047624818E-002
               1.0 / Math::Log(0.1, 1.2) == -7.9181246047624818E-002
         Math::Log(1.2) / Math::Log(0.1) == -7.9181246047624818E-002
Math::Log(Math::E, 0.1) * Math::Log(1.2) == -7.9181246047624804E-002

                     Math::Log(4.9, 1.2) == 8.7166610085093179E+000
               1.0 / Math::Log(1.2, 4.9) == 8.7166610085093161E+000
         Math::Log(4.9) / Math::Log(1.2) == 8.7166610085093179E+000
Math::Log(Math::E, 1.2) * Math::Log(4.9) == 8.7166610085093179E+000

                     Math::Log(9.9, 4.9) == 1.4425396251981288E+000
               1.0 / Math::Log(4.9, 9.9) == 1.4425396251981288E+000
         Math::Log(9.9) / Math::Log(4.9) == 1.4425396251981288E+000
Math::Log(Math::E, 4.9) * Math::Log(9.9) == 1.4425396251981288E+000

                     Math::Log(0.1, 9.9) == -1.0043839404494075E+000
               1.0 / Math::Log(9.9, 0.1) == -1.0043839404494075E+000
         Math::Log(0.1) / Math::Log(9.9) == -1.0043839404494075E+000
Math::Log(Math::E, 9.9) * Math::Log(0.1) == -1.0043839404494077E+000
*/
// Example for the Math.Log( double ) and Math.Log( double, double ) methods.
using System;

class LogDLogDD
{
    public static void Main()
    {
        Console.WriteLine(
            "This example of Math.Log( double ) and " +
            "Math.Log( double, double )\n" +
            "generates the following output.\n" );
        Console.WriteLine(
            "Evaluate these identities with " +
            "selected values for X and B (base):" );
        Console.WriteLine( "   log(B)[X] == 1 / log(X)[B]" );
        Console.WriteLine( "   log(B)[X] == ln[X] / ln[B]" );
        Console.WriteLine( "   log(B)[X] == log(B)[e] * ln[X]" );

        UseBaseAndArg(0.1, 1.2);
        UseBaseAndArg(1.2, 4.9);
        UseBaseAndArg(4.9, 9.9);
        UseBaseAndArg(9.9, 0.1);
    }

    // Evaluate logarithmic identities that are functions of two arguments.
    static void UseBaseAndArg(double argB, double argX)
    {
        // Evaluate log(B)[X] == 1 / log(X)[B].
        Console.WriteLine(
            "\n                   Math.Log({1}, {0}) == {2:E16}" +
            "\n             1.0 / Math.Log({0}, {1}) == {3:E16}",
            argB, argX, Math.Log(argX, argB),
            1.0 / Math.Log(argB, argX) );

        // Evaluate log(B)[X] == ln[X] / ln[B].
        Console.WriteLine(
            "        Math.Log({1}) / Math.Log({0}) == {2:E16}",
            argB, argX, Math.Log(argX) / Math.Log(argB) );

        // Evaluate log(B)[X] == log(B)[e] * ln[X].
        Console.WriteLine(
            "Math.Log(Math.E, {0}) * Math.Log({1}) == {2:E16}",
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX) );
    }
}

/*
This example of Math.Log( double ) and Math.Log( double, double )
generates the following output.

Evaluate these identities with selected values for X and B (base):
   log(B)[X] == 1 / log(X)[B]
   log(B)[X] == ln[X] / ln[B]
   log(B)[X] == log(B)[e] * ln[X]

                   Math.Log(1.2, 0.1) == -7.9181246047624818E-002
             1.0 / Math.Log(0.1, 1.2) == -7.9181246047624818E-002
        Math.Log(1.2) / Math.Log(0.1) == -7.9181246047624818E-002
Math.Log(Math.E, 0.1) * Math.Log(1.2) == -7.9181246047624804E-002

                   Math.Log(4.9, 1.2) == 8.7166610085093179E+000
             1.0 / Math.Log(1.2, 4.9) == 8.7166610085093161E+000
        Math.Log(4.9) / Math.Log(1.2) == 8.7166610085093179E+000
Math.Log(Math.E, 1.2) * Math.Log(4.9) == 8.7166610085093179E+000

                   Math.Log(9.9, 4.9) == 1.4425396251981288E+000
             1.0 / Math.Log(4.9, 9.9) == 1.4425396251981288E+000
        Math.Log(9.9) / Math.Log(4.9) == 1.4425396251981288E+000
Math.Log(Math.E, 4.9) * Math.Log(9.9) == 1.4425396251981288E+000

                   Math.Log(0.1, 9.9) == -1.0043839404494075E+000
             1.0 / Math.Log(9.9, 0.1) == -1.0043839404494075E+000
        Math.Log(0.1) / Math.Log(9.9) == -1.0043839404494075E+000
Math.Log(Math.E, 9.9) * Math.Log(0.1) == -1.0043839404494077E+000
*/
// Example for the Math.Log( double ) and Math.Log( double, double ) methods.
open System

// Evaluate logarithmic identities that are functions of two arguments.
let useBaseAndArg argB argX =
    // Evaluate log(B)[X] == 1 / log(X)[B].
    printfn $"""
                   Math.Log({argX}, {argB}) == {Math.Log(argX, argB):E16}
             1.0 / Math.Log({argB}, {argX}) == {1. / Math.Log(argB, argX):E16}"""

    // Evaluate log(B)[X] == ln[X] / ln[B].
    printfn $"        Math.Log({argX}) / Math.Log({argB}) == {Math.Log argX / Math.Log argB:E16}"

    // Evaluate log(B)[X] == log(B)[e] * ln[X].
    printfn $"Math.Log(Math.E, {argB}) * Math.Log({argX}) == {Math.Log(Math.E, argB) * Math.Log argX:E16}"


printfn
    """This example of Math.Log( double ) and Math.Log( double, double )
generates the following output.

printfn "Evaluate these identities with selected values for X and B (base):"""
printfn "   log(B)[X] == 1 / log(X)[B]"
printfn "   log(B)[X] == ln[X] / ln[B]" 
printfn "   log(B)[X] == log(B)[e] * ln[X]" 

useBaseAndArg 0.1 1.2
useBaseAndArg 1.2 4.9
useBaseAndArg 4.9 9.9
useBaseAndArg 9.9 0.1


// This example of Math.Log( double ) and Math.Log( double, double )
// generates the following output.
//
// Evaluate these identities with selected values for X and B (base):
//    log(B)[X] == 1 / log(X)[B]
//    log(B)[X] == ln[X] / ln[B]
//    log(B)[X] == log(B)[e] * ln[X]
//
//                    Math.Log(1.2, 0.1) == -7.9181246047624818E-002
//              1.0 / Math.Log(0.1, 1.2) == -7.9181246047624818E-002
//         Math.Log(1.2) / Math.Log(0.1) == -7.9181246047624818E-002
// Math.Log(Math.E, 0.1) * Math.Log(1.2) == -7.9181246047624804E-002
//
//                    Math.Log(4.9, 1.2) == 8.7166610085093179E+000
//              1.0 / Math.Log(1.2, 4.9) == 8.7166610085093161E+000
//         Math.Log(4.9) / Math.Log(1.2) == 8.7166610085093179E+000
// Math.Log(Math.E, 1.2) * Math.Log(4.9) == 8.7166610085093179E+000
//
//                    Math.Log(9.9, 4.9) == 1.4425396251981288E+000
//              1.0 / Math.Log(4.9, 9.9) == 1.4425396251981288E+000
//         Math.Log(9.9) / Math.Log(4.9) == 1.4425396251981288E+000
// Math.Log(Math.E, 4.9) * Math.Log(9.9) == 1.4425396251981288E+000
//
//                    Math.Log(0.1, 9.9) == -1.0043839404494075E+000
//              1.0 / Math.Log(9.9, 0.1) == -1.0043839404494075E+000
//         Math.Log(0.1) / Math.Log(9.9) == -1.0043839404494075E+000
// Math.Log(Math.E, 9.9) * Math.Log(0.1) == -1.0043839404494077E+000
' Example for the Math.Log( Double ) and Math.Log( Double, Double ) methods.
Module LogDLogDD
   
    Sub Main()
        Console.WriteLine( _
            "This example of Math.Log( Double ) and " + _
            "Math.Log( Double, Double )" & vbCrLf & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Evaluate these identities with selected " & _
            "values for X and B (base):")
        Console.WriteLine("   log(B)[X] = 1 / log(X)[B]")
        Console.WriteLine("   log(B)[X] = ln[X] / ln[B]")
        Console.WriteLine("   log(B)[X] = log(B)[e] * ln[X]")
          
        UseBaseAndArg(0.1, 1.2)
        UseBaseAndArg(1.2, 4.9)
        UseBaseAndArg(4.9, 9.9)
        UseBaseAndArg(9.9, 0.1)
    End Sub
       
    ' Evaluate logarithmic identities that are functions of two arguments.
    Sub UseBaseAndArg(argB As Double, argX As Double)

        ' Evaluate log(B)[X] = 1 / log(X)[B].
        Console.WriteLine( _
            vbCrLf & "                   Math.Log({1}, {0}) = {2:E16}" + _
            vbCrLf & "             1.0 / Math.Log({0}, {1}) = {3:E16}", _
            argB, argX, Math.Log(argX, argB), _
            1.0 / Math.Log(argB, argX))
          
        ' Evaluate log(B)[X] = ln[X] / ln[B].
        Console.WriteLine( _
            "        Math.Log({1}) / Math.Log({0}) = {2:E16}", _
            argB, argX, Math.Log(argX) / Math.Log(argB))
          
        ' Evaluate log(B)[X] = log(B)[e] * ln[X].
        Console.WriteLine( _
            "Math.Log(Math.E, {0}) * Math.Log({1}) = {2:E16}", _
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX))

    End Sub
End Module 'LogDLogDD

' This example of Math.Log( Double ) and Math.Log( Double, Double )
' generates the following output.
' 
' Evaluate these identities with selected values for X and B (base):
'    log(B)[X] = 1 / log(X)[B]
'    log(B)[X] = ln[X] / ln[B]
'    log(B)[X] = log(B)[e] * ln[X]
' 
'                    Math.Log(1.2, 0.1) = -7.9181246047624818E-002
'              1.0 / Math.Log(0.1, 1.2) = -7.9181246047624818E-002
'         Math.Log(1.2) / Math.Log(0.1) = -7.9181246047624818E-002
' Math.Log(Math.E, 0.1) * Math.Log(1.2) = -7.9181246047624804E-002
' 
'                    Math.Log(4.9, 1.2) = 8.7166610085093179E+000
'              1.0 / Math.Log(1.2, 4.9) = 8.7166610085093161E+000
'         Math.Log(4.9) / Math.Log(1.2) = 8.7166610085093179E+000
' Math.Log(Math.E, 1.2) * Math.Log(4.9) = 8.7166610085093179E+000
' 
'                    Math.Log(9.9, 4.9) = 1.4425396251981288E+000
'              1.0 / Math.Log(4.9, 9.9) = 1.4425396251981288E+000
'         Math.Log(9.9) / Math.Log(4.9) = 1.4425396251981288E+000
' Math.Log(Math.E, 4.9) * Math.Log(9.9) = 1.4425396251981288E+000
' 
'                    Math.Log(0.1, 9.9) = -1.0043839404494075E+000
'              1.0 / Math.Log(9.9, 0.1) = -1.0043839404494075E+000
'         Math.Log(0.1) / Math.Log(9.9) = -1.0043839404494075E+000
' Math.Log(Math.E, 9.9) * Math.Log(0.1) = -1.0043839404494077E+000

Commenti

Questo metodo chiama il runtime C sottostante e il risultato esatto o l'intervallo di input valido può differire tra sistemi operativi o architetture diverse.

Si applica a

Log(Double)

Origine:
Math.cs
Origine:
Math.cs
Origine:
Math.cs

Restituisce il logaritmo naturale (in base e) di un numero specificato.

public:
 static double Log(double d);
public static double Log (double d);
static member Log : double -> double
Public Shared Function Log (d As Double) As Double

Parametri

d
Double

Numero di cui è necessario trovare il logaritmo.

Restituisce

Uno dei valori della tabella seguente.

Parametro d. Valore restituito
Positivo Logaritmo naturale di d: ln d o log e d
ZeroNegativeInfinity
NegativoNaN
Uguale a NaNNaN
Uguale a PositiveInfinityPositiveInfinity

Esempio

Nell'esempio seguente viene illustrato il Log metodo .

using System;
public class Example
{
   public static void Main()
   {
      Console.WriteLine("  Evaluate this identity with selected values for X:");
      Console.WriteLine("                              ln(x) = 1 / log[X](B)");
      Console.WriteLine();

      double[] XArgs = { 1.2, 4.9, 9.9, 0.1 };

      foreach (double argX in XArgs)
      {
         // Find natural log of argX.
         Console.WriteLine("                      Math.Log({0}) = {1:E16}",
                           argX, Math.Log(argX));

         // Evaluate 1 / log[X](e).
         Console.WriteLine("             1.0 / Math.Log(e, {0}) = {1:E16}",
                           argX, 1.0 / Math.Log(Math.E, argX));
         Console.WriteLine();
      }
   }
}
// This example displays the following output:
//         Evaluate this identity with selected values for X:
//                                     ln(x) = 1 / log[X](B)
//
//                             Math.Log(1.2) = 1.8232155679395459E-001
//                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
//
//                             Math.Log(4.9) = 1.5892352051165810E+000
//                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
//
//                             Math.Log(9.9) = 2.2925347571405443E+000
//                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
//
//                             Math.Log(0.1) = -2.3025850929940455E+000
//                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000
open System

printfn "  Evaluate this identity with selected values for X:"
printfn "                              ln(x) = 1 / log[X](B)\n"

let XArgs = [| 1.2; 4.9; 9.9; 0.1 |]

for argX in XArgs do
    // Find natural log of argX.
    // The F# log function may be used instead
    printfn $"                      Math.Log({argX}) = {Math.Log argX:E16}"

    // Evaluate 1 / log[X](e).
    printfn $"             1.0 / Math.Log(e, {argX}) = {1. / Math.Log(Math.E, argX):E16}\n"

// This example displays the following output:
//         Evaluate this identity with selected values for X:
//                                     ln(x) = 1 / log[X](B)
//
//                             Math.Log(1.2) = 1.8232155679395459E-001
//                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
//
//                             Math.Log(4.9) = 1.5892352051165810E+000
//                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
//
//                             Math.Log(9.9) = 2.2925347571405443E+000
//                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
//
//                             Math.Log(0.1) = -2.3025850929940455E+000
//                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000
Module Example
   Sub Main()
      Console.WriteLine( _
         "  Evaluate this identity with selected values for X:")
      Console.WriteLine("                              ln(x) = 1 / log[X](B)")
      Console.WriteLine()
          
      Dim XArgs() As Double = { 1.2, 4.9, 9.9, 0.1 }
   
      For Each argX As Double In XArgs
         ' Find natural log of argX.
         Console.WriteLine("                      Math.Log({0}) = {1:E16}", _
                           argX, Math.Log(argX))

         ' Evaluate 1 / log[X](e).
         Console.WriteLine("             1.0 / Math.Log(e, {0}) = {1:E16}", _
                           argX, 1.0 / Math.Log(Math.E, argX))
         Console.WriteLine()
      Next
   End Sub 
End Module
' This example displays the following output:
'         Evaluate this identity with selected values for X:
'                                     ln(x) = 1 / log[X](B)
'       
'                             Math.Log(1.2) = 1.8232155679395459E-001
'                    1.0 / Math.Log(e, 1.2) = 1.8232155679395459E-001
'       
'                             Math.Log(4.9) = 1.5892352051165810E+000
'                    1.0 / Math.Log(e, 4.9) = 1.5892352051165810E+000
'       
'                             Math.Log(9.9) = 2.2925347571405443E+000
'                    1.0 / Math.Log(e, 9.9) = 2.2925347571405443E+000
'       
'                             Math.Log(0.1) = -2.3025850929940455E+000
'                    1.0 / Math.Log(e, 0.1) = -2.3025850929940455E+000

Commenti

Il parametro d viene specificato come numero base 10.

Questo metodo chiama il runtime C sottostante e il risultato esatto o l'intervallo di input valido può differire tra sistemi operativi o architetture diverse.

Questo metodo chiama il runtime C sottostante e il risultato esatto o l'intervallo di input valido può differire tra sistemi operativi o architetture diverse.

Vedi anche

Si applica a