Microsoft.MachineLearningServices workspaces/jobs 2022-05-01

Bicep リソース定義

ワークスペース/ジョブ リソースの種類は、次を対象とする操作と共にデプロイできます。

  • リソース グループの - リソース グループのデプロイ コマンド 参照

各 API バージョンで変更されたプロパティの一覧については、変更ログの参照してください。

リソースの形式

Microsoft.MachineLearningServices/workspaces/jobs リソースを作成するには、次の Bicep をテンプレートに追加します。

resource symbolicname 'Microsoft.MachineLearningServices/workspaces/jobs@2022-05-01' = {
  name: 'string'
  parent: resourceSymbolicName
  properties: {
    computeId: 'string'
    description: 'string'
    displayName: 'string'
    experimentName: 'string'
    identity: {
      identityType: 'string'
      // For remaining properties, see IdentityConfiguration objects
    }
    isArchived: bool
    properties: {
      {customized property}: 'string'
    }
    services: {
      {customized property}: {
        endpoint: 'string'
        jobServiceType: 'string'
        port: int
        properties: {
          {customized property}: 'string'
        }
      }
    }
    tags: {}
    jobType: 'string'
    // For remaining properties, see JobBaseProperties objects
  }
}

JobBaseProperties オブジェクト

オブジェクトの種類を指定するには、jobType プロパティを設定します。

コマンドの場合は、次のコマンドを使用します。

  jobType: 'Command'
  codeId: 'string'
  command: 'string'
  distribution: {
    distributionType: 'string'
    // For remaining properties, see DistributionConfiguration objects
  }
  environmentId: 'string'
  environmentVariables: {
    {customized property}: 'string'
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  limits: {
    jobLimitsType: 'string'
    timeout: 'string'
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  resources: {
    instanceCount: int
    instanceType: 'string'
    properties: {
      {customized property}: any()
    }
  }

パイプラインの場合は、次を使用します。

  jobType: 'Pipeline'
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  jobs: {
    {customized property}: any()
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  settings: any()

スイープの場合は、次を使用します。

  jobType: 'Sweep'
  earlyTermination: {
    delayEvaluation: int
    evaluationInterval: int
    policyType: 'string'
    // For remaining properties, see EarlyTerminationPolicy objects
  }
  inputs: {
    {customized property}: {
      description: 'string'
      jobInputType: 'string'
      // For remaining properties, see JobInput objects
    }
  }
  limits: {
    jobLimitsType: 'string'
    maxConcurrentTrials: int
    maxTotalTrials: int
    timeout: 'string'
    trialTimeout: 'string'
  }
  objective: {
    goal: 'string'
    primaryMetric: 'string'
  }
  outputs: {
    {customized property}: {
      description: 'string'
      jobOutputType: 'string'
      // For remaining properties, see JobOutput objects
    }
  }
  samplingAlgorithm: {
    samplingAlgorithmType: 'string'
    // For remaining properties, see SamplingAlgorithm objects
  }
  searchSpace: any()
  trial: {
    codeId: 'string'
    command: 'string'
    distribution: {
      distributionType: 'string'
      // For remaining properties, see DistributionConfiguration objects
    }
    environmentId: 'string'
    environmentVariables: {
      {customized property}: 'string'
    }
    resources: {
      instanceCount: int
      instanceType: 'string'
      properties: {
        {customized property}: any()
      }
    }
  }

IdentityConfiguration オブジェクト

identityType プロパティを設定して、オブジェクトの種類を指定します。

AMLTokenを する場合は、次を使用します。

  identityType: 'AMLToken'

マネージドの場合は、次を使用します。

  identityType: 'Managed'
  clientId: 'string'
  objectId: 'string'
  resourceId: 'string'

UserIdentityの場合は、次の値を使用します。

  identityType: 'UserIdentity'

DistributionConfiguration オブジェクト

オブジェクトの種類を指定するには、distributionType プロパティを設定します。

Mpiの場合は、次を使用します。

  distributionType: 'Mpi'
  processCountPerInstance: int

PyTorchを する場合は、次を使用します。

  distributionType: 'PyTorch'
  processCountPerInstance: int

TensorFlowの場合は、次を使用します。

  distributionType: 'TensorFlow'
  parameterServerCount: int
  workerCount: int

JobInput オブジェクト

jobInputType プロパティを設定して、オブジェクトの種類を指定します。

custom_modelの場合は、次を使用します。

  jobInputType: 'custom_model'
  mode: 'string'
  uri: 'string'

リテラル の場合は、次の値を使用します。

  jobInputType: 'literal'
  value: 'string'

mlflow_modelの場合は、次を使用します。

  jobInputType: 'mlflow_model'
  mode: 'string'
  uri: 'string'

mltableを する場合は、次を使用します。

  jobInputType: 'mltable'
  mode: 'string'
  uri: 'string'

triton_modelの場合は、次を使用します。

  jobInputType: 'triton_model'
  mode: 'string'
  uri: 'string'

uri_fileの場合は、次を使用します。

  jobInputType: 'uri_file'
  mode: 'string'
  uri: 'string'

uri_folderの場合は、次を使用します。

  jobInputType: 'uri_folder'
  mode: 'string'
  uri: 'string'

JobOutput オブジェクト

オブジェクトの種類を指定するには、jobOutputType プロパティを設定します。

custom_modelの場合は、次を使用します。

  jobOutputType: 'custom_model'
  mode: 'string'
  uri: 'string'

mlflow_modelの場合は、次を使用します。

  jobOutputType: 'mlflow_model'
  mode: 'string'
  uri: 'string'

mltableを する場合は、次を使用します。

  jobOutputType: 'mltable'
  mode: 'string'
  uri: 'string'

triton_modelの場合は、次を使用します。

  jobOutputType: 'triton_model'
  mode: 'string'
  uri: 'string'

uri_fileの場合は、次を使用します。

  jobOutputType: 'uri_file'
  mode: 'string'
  uri: 'string'

uri_folderの場合は、次を使用します。

  jobOutputType: 'uri_folder'
  mode: 'string'
  uri: 'string'

EarlyTerminationPolicy オブジェクト

policyType プロパティを設定して、オブジェクトの種類を指定します。

バンディットの場合は、次を使用します。

  policyType: 'Bandit'
  slackAmount: int
  slackFactor: int

MedianStopping の場合は、次の値を使用します。

  policyType: 'MedianStopping'

TruncationSelectionの場合は、次のコマンドを使用します。

  policyType: 'TruncationSelection'
  truncationPercentage: int

SamplingAlgorithm オブジェクト

samplingAlgorithmType プロパティを設定して、オブジェクトの種類を指定します。

ベイジアン の場合は、次を使用します。

  samplingAlgorithmType: 'Bayesian'

Gridの場合は、次を使用します。

  samplingAlgorithmType: 'Grid'

ランダムには、次の値を使用します。

  samplingAlgorithmType: 'Random'
  rule: 'string'
  seed: int

プロパティ値

workspaces/jobs

名前 形容 価値
名前 リソース名

Bicepで子リソースの名前と種類 設定する方法を参照してください。
string (必須)
Bicep では、子リソースの親リソースを指定できます。 このプロパティを追加する必要があるのは、子リソースが親リソースの外部で宣言されている場合のみです。

詳細については、「親リソースの外部 子リソース」を参照してください。
種類のリソースのシンボリック名: ワークスペース
プロパティ [必須]エンティティの追加の属性。 JobBaseProperties (必須)

JobBaseProperties

名前 形容 価値
computeId コンピューティング リソースの ARM リソース ID。
形容 資産の説明テキスト。
displayName ジョブの表示名。
experimentName ジョブが属する実験の名前。 設定されていない場合、ジョブは "既定" の実験に配置されます。
同一性 ID の構成。 設定する場合は、AmlToken、ManagedIdentity、UserIdentity、または null のいずれかになります。
null の場合、既定値は AmlToken になります。
IdentityConfiguration
isArchived 資産はアーカイブされていますか? bool
プロパティ 資産プロパティ ディクショナリ。 ResourceBaseProperties
サービス JobEndpoints の一覧。
ローカル ジョブの場合、ジョブ エンドポイントのエンドポイント値は FileStreamObject になります。
JobBaseServices
タグ タグ ディクショナリ。 タグは追加、削除、更新できます。 オブジェクト
jobType オブジェクトの種類を設定する コマンド
パイプラインの
スイープ (必須)

IdentityConfiguration

名前 形容 価値
identityType オブジェクトの種類を設定する AMLToken を する
マネージド

UserIdentity (必須)

AmlToken

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 'AMLToken' (必須)

ManagedIdentity

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 'Managed' (必須)
clientId クライアント ID でユーザー割り当て ID を指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

制約:
最小長 = 36
最大長 = 36
パターン = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
objectId ユーザー割り当て ID をオブジェクト ID で指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

制約:
最小長 = 36
最大長 = 36
パターン = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId ARM リソース ID でユーザー割り当て ID を指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

UserIdentity

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 'UserIdentity' (必須)

ResourceBaseProperties

名前 形容 価値
{カスタマイズされたプロパティ}

JobBaseServices

名前 形容 価値
{カスタマイズされたプロパティ} JobService

JobService

名前 形容 価値
エンドポイント エンドポイントの URL。
jobServiceType エンドポイントの種類。
エンドポイントのポート。 int
プロパティ エンドポイントに設定する追加のプロパティ。 JobServiceProperties

JobServiceProperties

名前 形容 価値
{カスタマイズされたプロパティ}

CommandJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 'Command' (必須)
codeId コード資産の ARM リソース ID。
命令 [必須]ジョブの起動時に実行するコマンド。 例えば。 "python train.py" string (必須)

制約:
最小長 = 1
パターン = [a-zA-Z0-9_]
流通 ジョブの配布構成。 設定する場合は、Mpi、Tensorflow、PyTorch、または null のいずれかになります。 DistributionConfiguration
environmentId [必須]ジョブの環境仕様の ARM リソース ID。 string (必須)

制約:
パターン = [a-zA-Z0-9_]
environmentVariables ジョブに含まれる環境変数。 CommandJobEnvironmentVariables
入力 ジョブで使用される入力データ バインディングのマッピング。 CommandJobInputs
切り コマンド ジョブの制限。 CommandJobLimits
出力 ジョブで使用される出力データ バインディングのマッピング。 CommandJobOutputs
リソース ジョブのコンピューティング リソース構成。 ResourceConfiguration

DistributionConfiguration

名前 形容 価値
distributionType オブジェクトの種類を設定する Mpi
PyTorch を する
TensorFlow (必須)

Mpi

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 'Mpi' (必須)
processCountPerInstance MPI ノードあたりのプロセス数。 int

PyTorch

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 'PyTorch' (必須)
processCountPerInstance ノードあたりのプロセス数。 int

TensorFlow

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 'TensorFlow' (必須)
parameterServerCount パラメーター サーバー タスクの数。 int
workerCount ワーカーの数。 指定しない場合は、既定でインスタンス数が設定されます。 int

CommandJobEnvironmentVariables

名前 形容 価値
{カスタマイズされたプロパティ}

CommandJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

JobInput

名前 形容 価値
形容 入力の説明。
jobInputType オブジェクトの種類を設定する custom_model
リテラル
mlflow_model
mltable
する
triton_model
uri_file
uri_folder (必須)

CustomModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'custom_model' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

LiteralJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'literal' (必須)
価値 [必須]入力のリテラル値。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

MLFlowModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'mlflow_model' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

MLTableJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'mltable' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

TritonModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'triton_model' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

UriFileJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'uri_file' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

UriFolderJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'uri_folder' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

CommandJobLimits

名前 形容 価値
jobLimitsType [必須]JobLimit 型。 'Command'
'Sweep' (必須)
タイムアウト ISO 8601 形式の最大実行時間。その後、ジョブは取り消されます。 秒という低い精度の期間のみをサポートします。

CommandJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

JobOutput

名前 形容 価値
形容 出力の説明。
jobOutputType オブジェクトの種類を設定する custom_model
mlflow_model
mltable を する
triton_model
uri_file
uri_folder (必須)

CustomModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'custom_model' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

MLFlowModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'mlflow_model' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

MLTableJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'mltable' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

TritonModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'triton_model' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

UriFileJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'uri_file' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

UriFolderJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'uri_folder' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

ResourceConfiguration

名前 形容 価値
instanceCount コンピューティング 先で使用されるインスタンスまたはノードの数 (省略可能)。 int
instanceType コンピューティング 先でサポートされている VM のオプションの種類。
プロパティ 追加のプロパティ バッグ。 ResourceConfigurationProperties

ResourceConfigurationProperties

名前 形容 価値
{カスタマイズされたプロパティ} Bicep の場合は、any() 関数を使用できます。

PipelineJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 'Pipeline' (必須)
入力 パイプライン ジョブの入力。 PipelineJobInputs
ジョブ ジョブはパイプライン ジョブを構築します。 PipelineJobs
出力 パイプライン ジョブの出力 PipelineJobOutputs
設定 ContinueRunOnStepFailure などのパイプライン設定。 Bicep の場合は、any() 関数を使用できます。

PipelineJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

PipelineJobs

名前 形容 価値
{カスタマイズされたプロパティ} Bicep の場合は、any() 関数を使用できます。

PipelineJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

SweepJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 'Sweep' (必須)
earlyTermination 早期終了ポリシーを使用すると、実行が完了する前にパフォーマンスの低い実行を取り消す EarlyTerminationPolicy
入力 ジョブで使用される入力データ バインディングのマッピング。 SweepJobInputs
切り スイープ ジョブの制限。 SweepJobLimits
目的 [必須]最適化の目的。 目標 (必須)
出力 ジョブで使用される出力データ バインディングのマッピング。 SweepJobOutputs
samplingAlgorithm [必須]ハイパーパラメーター サンプリング アルゴリズム SamplingAlgorithm (必須)
searchSpace [必須]各パラメーターとその分布を含むディクショナリ。 ディクショナリ キーはパラメーターの名前です Bicep の場合は、any() 関数を使用できます。(必須)
裁判 [必須]試用版コンポーネントの定義。 TrialComponent (必須)

EarlyTerminationPolicy

名前 形容 価値
delayEvaluation 最初の評価を遅らせる間隔の数。 int
evaluationInterval ポリシー評価間の間隔 (実行回数)。 int
policyType オブジェクトの種類を設定する バンディット
MedianStopping
TruncationSelection (必須)

BanditPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 'Bandit' (必須)
slackAmount 最高のパフォーマンスを発揮する実行から許容される絶対距離。 int
slackFactor 最もパフォーマンスの高い実行からの許容距離の比率。 int

MedianStoppingPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 'MedianStopping' (必須)

TruncationSelectionPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 'TruncationSelection' (必須)
truncationPercentage 各評価間隔で取り消す実行の割合。 int

SweepJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

SweepJobLimits

名前 形容 価値
jobLimitsType [必須]JobLimit 型。 'Command'
'Sweep' (必須)
maxConcurrentTrials スイープ ジョブの最大同時試行回数。 int
maxTotalTrials スイープ ジョブの最大試行回数。 int
タイムアウト ISO 8601 形式の最大実行時間。その後、ジョブは取り消されます。 秒という低い精度の期間のみをサポートします。
trialTimeout スイープ ジョブ試用版のタイムアウト値。

目的

名前 形容 価値
ゴール [必須]ハイパーパラメーター調整でサポートされるメトリックの目標を定義します '最大化'
'最小化' (必須)
primaryMetric [必須]最適化するメトリックの名前。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

SweepJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

SamplingAlgorithm

名前 形容 価値
samplingAlgorithmType オブジェクトの種類を設定する ベイジアン
Grid
ランダム の (必須)

BayesianSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム 'Bayesian' (必須)

GridSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム 'Grid' (必須)

RandomSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム 'Random' (必須)
支配 ランダム アルゴリズムの特定の種類 'Random'
'Sobol'
乱数生成のシードとして使用する省略可能な整数 int

TrialComponent

名前 形容 価値
codeId コード資産の ARM リソース ID。
命令 [必須]ジョブの起動時に実行するコマンド。 例えば。 "python train.py" string (必須)

制約:
最小長 = 1
パターン = [a-zA-Z0-9_]
流通 ジョブの配布構成。 設定する場合は、Mpi、Tensorflow、PyTorch、または null のいずれかになります。 DistributionConfiguration
environmentId [必須]ジョブの環境仕様の ARM リソース ID。 string (必須)

制約:
パターン = [a-zA-Z0-9_]
environmentVariables ジョブに含まれる環境変数。 TrialComponentEnvironmentVariables
リソース ジョブのコンピューティング リソース構成。 ResourceConfiguration

TrialComponentEnvironmentVariables

名前 形容 価値
{カスタマイズされたプロパティ}

クイック スタート テンプレート

次のクイック スタート テンプレートでは、このリソースの種類をデプロイします。

テンプレート 形容
Azure Machine Learning AutoML 分類ジョブ を作成する

Azure にデプロイする
このテンプレートでは、Azure Machine Learning AutoML 分類ジョブを作成して、クライアントが金融機関との固定定期預金をサブスクライブするかどうかを予測するための最適なモデルを見つけます。
Azure Machine Learning コマンド ジョブ を作成する

Azure にデプロイする
このテンプレートは、基本的なhello_world スクリプトを使用して Azure Machine Learning コマンド ジョブを作成します
Azure Machine Learning スイープ ジョブ を作成する

Azure
にデプロイする
このテンプレートでは、ハイパーパラメーター調整用の Azure Machine Learning スイープ ジョブが作成されます。

ARM テンプレート リソース定義

ワークスペース/ジョブ リソースの種類は、次を対象とする操作と共にデプロイできます。

  • リソース グループの - リソース グループのデプロイ コマンド 参照

各 API バージョンで変更されたプロパティの一覧については、変更ログの参照してください。

リソースの形式

Microsoft.MachineLearningServices/workspaces/jobs リソースを作成するには、次の JSON をテンプレートに追加します。

{
  "type": "Microsoft.MachineLearningServices/workspaces/jobs",
  "apiVersion": "2022-05-01",
  "name": "string",
  "properties": {
    "computeId": "string",
    "description": "string",
    "displayName": "string",
    "experimentName": "string",
    "identity": {
      "identityType": "string"
      // For remaining properties, see IdentityConfiguration objects
    },
    "isArchived": "bool",
    "properties": {
      "{customized property}": "string"
    },
    "services": {
      "{customized property}": {
        "endpoint": "string",
        "jobServiceType": "string",
        "port": "int",
        "properties": {
          "{customized property}": "string"
        }
      }
    },
    "tags": {},
    "jobType": "string"
    // For remaining properties, see JobBaseProperties objects
  }
}

JobBaseProperties オブジェクト

オブジェクトの種類を指定するには、jobType プロパティを設定します。

コマンドの場合は、次のコマンドを使用します。

  "jobType": "Command",
  "codeId": "string",
  "command": "string",
  "distribution": {
    "distributionType": "string"
    // For remaining properties, see DistributionConfiguration objects
  },
  "environmentId": "string",
  "environmentVariables": {
    "{customized property}": "string"
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "limits": {
    "jobLimitsType": "string",
    "timeout": "string"
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "resources": {
    "instanceCount": "int",
    "instanceType": "string",
    "properties": {
      "{customized property}": {}
    }
  }

パイプラインの場合は、次を使用します。

  "jobType": "Pipeline",
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "jobs": {
    "{customized property}": {}
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "settings": {}

スイープの場合は、次を使用します。

  "jobType": "Sweep",
  "earlyTermination": {
    "delayEvaluation": "int",
    "evaluationInterval": "int",
    "policyType": "string"
    // For remaining properties, see EarlyTerminationPolicy objects
  },
  "inputs": {
    "{customized property}": {
      "description": "string",
      "jobInputType": "string"
      // For remaining properties, see JobInput objects
    }
  },
  "limits": {
    "jobLimitsType": "string",
    "maxConcurrentTrials": "int",
    "maxTotalTrials": "int",
    "timeout": "string",
    "trialTimeout": "string"
  },
  "objective": {
    "goal": "string",
    "primaryMetric": "string"
  },
  "outputs": {
    "{customized property}": {
      "description": "string",
      "jobOutputType": "string"
      // For remaining properties, see JobOutput objects
    }
  },
  "samplingAlgorithm": {
    "samplingAlgorithmType": "string"
    // For remaining properties, see SamplingAlgorithm objects
  },
  "searchSpace": {},
  "trial": {
    "codeId": "string",
    "command": "string",
    "distribution": {
      "distributionType": "string"
      // For remaining properties, see DistributionConfiguration objects
    },
    "environmentId": "string",
    "environmentVariables": {
      "{customized property}": "string"
    },
    "resources": {
      "instanceCount": "int",
      "instanceType": "string",
      "properties": {
        "{customized property}": {}
      }
    }
  }

IdentityConfiguration オブジェクト

identityType プロパティを設定して、オブジェクトの種類を指定します。

AMLTokenを する場合は、次を使用します。

  "identityType": "AMLToken"

マネージドの場合は、次を使用します。

  "identityType": "Managed",
  "clientId": "string",
  "objectId": "string",
  "resourceId": "string"

UserIdentityの場合は、次の値を使用します。

  "identityType": "UserIdentity"

DistributionConfiguration オブジェクト

オブジェクトの種類を指定するには、distributionType プロパティを設定します。

Mpiの場合は、次を使用します。

  "distributionType": "Mpi",
  "processCountPerInstance": "int"

PyTorchを する場合は、次を使用します。

  "distributionType": "PyTorch",
  "processCountPerInstance": "int"

TensorFlowの場合は、次を使用します。

  "distributionType": "TensorFlow",
  "parameterServerCount": "int",
  "workerCount": "int"

JobInput オブジェクト

jobInputType プロパティを設定して、オブジェクトの種類を指定します。

custom_modelの場合は、次を使用します。

  "jobInputType": "custom_model",
  "mode": "string",
  "uri": "string"

リテラル の場合は、次の値を使用します。

  "jobInputType": "literal",
  "value": "string"

mlflow_modelの場合は、次を使用します。

  "jobInputType": "mlflow_model",
  "mode": "string",
  "uri": "string"

mltableを する場合は、次を使用します。

  "jobInputType": "mltable",
  "mode": "string",
  "uri": "string"

triton_modelの場合は、次を使用します。

  "jobInputType": "triton_model",
  "mode": "string",
  "uri": "string"

uri_fileの場合は、次を使用します。

  "jobInputType": "uri_file",
  "mode": "string",
  "uri": "string"

uri_folderの場合は、次を使用します。

  "jobInputType": "uri_folder",
  "mode": "string",
  "uri": "string"

JobOutput オブジェクト

オブジェクトの種類を指定するには、jobOutputType プロパティを設定します。

custom_modelの場合は、次を使用します。

  "jobOutputType": "custom_model",
  "mode": "string",
  "uri": "string"

mlflow_modelの場合は、次を使用します。

  "jobOutputType": "mlflow_model",
  "mode": "string",
  "uri": "string"

mltableを する場合は、次を使用します。

  "jobOutputType": "mltable",
  "mode": "string",
  "uri": "string"

triton_modelの場合は、次を使用します。

  "jobOutputType": "triton_model",
  "mode": "string",
  "uri": "string"

uri_fileの場合は、次を使用します。

  "jobOutputType": "uri_file",
  "mode": "string",
  "uri": "string"

uri_folderの場合は、次を使用します。

  "jobOutputType": "uri_folder",
  "mode": "string",
  "uri": "string"

EarlyTerminationPolicy オブジェクト

policyType プロパティを設定して、オブジェクトの種類を指定します。

バンディットの場合は、次を使用します。

  "policyType": "Bandit",
  "slackAmount": "int",
  "slackFactor": "int"

MedianStopping の場合は、次の値を使用します。

  "policyType": "MedianStopping"

TruncationSelectionの場合は、次のコマンドを使用します。

  "policyType": "TruncationSelection",
  "truncationPercentage": "int"

SamplingAlgorithm オブジェクト

samplingAlgorithmType プロパティを設定して、オブジェクトの種類を指定します。

ベイジアン の場合は、次を使用します。

  "samplingAlgorithmType": "Bayesian"

Gridの場合は、次を使用します。

  "samplingAlgorithmType": "Grid"

ランダムには、次の値を使用します。

  "samplingAlgorithmType": "Random",
  "rule": "string",
  "seed": "int"

プロパティ値

workspaces/jobs

名前 形容 価値
種類 リソースの種類 'Microsoft.MachineLearningServices/workspaces/jobs'
apiVersion リソース API のバージョン '2022-05-01'
名前 リソース名

JSON ARM テンプレートで子リソースの名前と型 設定する方法を参照してください。
string (必須)
プロパティ [必須]エンティティの追加の属性。 JobBaseProperties (必須)

JobBaseProperties

名前 形容 価値
computeId コンピューティング リソースの ARM リソース ID。
形容 資産の説明テキスト。
displayName ジョブの表示名。
experimentName ジョブが属する実験の名前。 設定されていない場合、ジョブは "既定" の実験に配置されます。
同一性 ID の構成。 設定する場合は、AmlToken、ManagedIdentity、UserIdentity、または null のいずれかになります。
null の場合、既定値は AmlToken になります。
IdentityConfiguration
isArchived 資産はアーカイブされていますか? bool
プロパティ 資産プロパティ ディクショナリ。 ResourceBaseProperties
サービス JobEndpoints の一覧。
ローカル ジョブの場合、ジョブ エンドポイントのエンドポイント値は FileStreamObject になります。
JobBaseServices
タグ タグ ディクショナリ。 タグは追加、削除、更新できます。 オブジェクト
jobType オブジェクトの種類を設定する コマンド
パイプラインの
スイープ (必須)

IdentityConfiguration

名前 形容 価値
identityType オブジェクトの種類を設定する AMLToken を する
マネージド

UserIdentity (必須)

AmlToken

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 'AMLToken' (必須)

ManagedIdentity

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 'Managed' (必須)
clientId クライアント ID でユーザー割り当て ID を指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

制約:
最小長 = 36
最大長 = 36
パターン = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
objectId ユーザー割り当て ID をオブジェクト ID で指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

制約:
最小長 = 36
最大長 = 36
パターン = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId ARM リソース ID でユーザー割り当て ID を指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

UserIdentity

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 'UserIdentity' (必須)

ResourceBaseProperties

名前 形容 価値
{カスタマイズされたプロパティ}

JobBaseServices

名前 形容 価値
{カスタマイズされたプロパティ} JobService

JobService

名前 形容 価値
エンドポイント エンドポイントの URL。
jobServiceType エンドポイントの種類。
エンドポイントのポート。 int
プロパティ エンドポイントに設定する追加のプロパティ。 JobServiceProperties

JobServiceProperties

名前 形容 価値
{カスタマイズされたプロパティ}

CommandJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 'Command' (必須)
codeId コード資産の ARM リソース ID。
命令 [必須]ジョブの起動時に実行するコマンド。 例えば。 "python train.py" string (必須)

制約:
最小長 = 1
パターン = [a-zA-Z0-9_]
流通 ジョブの配布構成。 設定する場合は、Mpi、Tensorflow、PyTorch、または null のいずれかになります。 DistributionConfiguration
environmentId [必須]ジョブの環境仕様の ARM リソース ID。 string (必須)

制約:
パターン = [a-zA-Z0-9_]
environmentVariables ジョブに含まれる環境変数。 CommandJobEnvironmentVariables
入力 ジョブで使用される入力データ バインディングのマッピング。 CommandJobInputs
切り コマンド ジョブの制限。 CommandJobLimits
出力 ジョブで使用される出力データ バインディングのマッピング。 CommandJobOutputs
リソース ジョブのコンピューティング リソース構成。 ResourceConfiguration

DistributionConfiguration

名前 形容 価値
distributionType オブジェクトの種類を設定する Mpi
PyTorch を する
TensorFlow (必須)

Mpi

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 'Mpi' (必須)
processCountPerInstance MPI ノードあたりのプロセス数。 int

PyTorch

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 'PyTorch' (必須)
processCountPerInstance ノードあたりのプロセス数。 int

TensorFlow

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 'TensorFlow' (必須)
parameterServerCount パラメーター サーバー タスクの数。 int
workerCount ワーカーの数。 指定しない場合は、既定でインスタンス数が設定されます。 int

CommandJobEnvironmentVariables

名前 形容 価値
{カスタマイズされたプロパティ}

CommandJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

JobInput

名前 形容 価値
形容 入力の説明。
jobInputType オブジェクトの種類を設定する custom_model
リテラル
mlflow_model
mltable
する
triton_model
uri_file
uri_folder (必須)

CustomModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'custom_model' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

LiteralJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'literal' (必須)
価値 [必須]入力のリテラル値。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

MLFlowModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'mlflow_model' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

MLTableJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'mltable' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

TritonModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'triton_model' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

UriFileJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'uri_file' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

UriFolderJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 'uri_folder' (必須)
モード 入力資産配信モード。 'Direct'
'ダウンロード'
'EvalDownload'
'EvalMount'
'ReadOnlyMount'
'ReadWriteMount'
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

CommandJobLimits

名前 形容 価値
jobLimitsType [必須]JobLimit 型。 'Command'
'Sweep' (必須)
タイムアウト ISO 8601 形式の最大実行時間。その後、ジョブは取り消されます。 秒という低い精度の期間のみをサポートします。

CommandJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

JobOutput

名前 形容 価値
形容 出力の説明。
jobOutputType オブジェクトの種類を設定する custom_model
mlflow_model
mltable を する
triton_model
uri_file
uri_folder (必須)

CustomModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'custom_model' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

MLFlowModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'mlflow_model' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

MLTableJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'mltable' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

TritonModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'triton_model' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

UriFileJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'uri_file' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

UriFolderJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 'uri_folder' (必須)
モード 出力資産配信モード。 'ReadWriteMount'
'Upload'
uri 出力アセット URI。

ResourceConfiguration

名前 形容 価値
instanceCount コンピューティング 先で使用されるインスタンスまたはノードの数 (省略可能)。 int
instanceType コンピューティング 先でサポートされている VM のオプションの種類。
プロパティ 追加のプロパティ バッグ。 ResourceConfigurationProperties

ResourceConfigurationProperties

名前 形容 価値
{カスタマイズされたプロパティ}

PipelineJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 'Pipeline' (必須)
入力 パイプライン ジョブの入力。 PipelineJobInputs
ジョブ ジョブはパイプライン ジョブを構築します。 PipelineJobs
出力 パイプライン ジョブの出力 PipelineJobOutputs
設定 ContinueRunOnStepFailure などのパイプライン設定。

PipelineJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

PipelineJobs

名前 形容 価値
{カスタマイズされたプロパティ}

PipelineJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

SweepJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 'Sweep' (必須)
earlyTermination 早期終了ポリシーを使用すると、実行が完了する前にパフォーマンスの低い実行を取り消す EarlyTerminationPolicy
入力 ジョブで使用される入力データ バインディングのマッピング。 SweepJobInputs
切り スイープ ジョブの制限。 SweepJobLimits
目的 [必須]最適化の目的。 目標 (必須)
出力 ジョブで使用される出力データ バインディングのマッピング。 SweepJobOutputs
samplingAlgorithm [必須]ハイパーパラメーター サンプリング アルゴリズム SamplingAlgorithm (必須)
searchSpace [必須]各パラメーターとその分布を含むディクショナリ。 ディクショナリ キーはパラメーターの名前です
裁判 [必須]試用版コンポーネントの定義。 TrialComponent (必須)

EarlyTerminationPolicy

名前 形容 価値
delayEvaluation 最初の評価を遅らせる間隔の数。 int
evaluationInterval ポリシー評価間の間隔 (実行回数)。 int
policyType オブジェクトの種類を設定する バンディット
MedianStopping
TruncationSelection (必須)

BanditPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 'Bandit' (必須)
slackAmount 最高のパフォーマンスを発揮する実行から許容される絶対距離。 int
slackFactor 最もパフォーマンスの高い実行からの許容距離の比率。 int

MedianStoppingPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 'MedianStopping' (必須)

TruncationSelectionPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 'TruncationSelection' (必須)
truncationPercentage 各評価間隔で取り消す実行の割合。 int

SweepJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

SweepJobLimits

名前 形容 価値
jobLimitsType [必須]JobLimit 型。 'Command'
'Sweep' (必須)
maxConcurrentTrials スイープ ジョブの最大同時試行回数。 int
maxTotalTrials スイープ ジョブの最大試行回数。 int
タイムアウト ISO 8601 形式の最大実行時間。その後、ジョブは取り消されます。 秒という低い精度の期間のみをサポートします。
trialTimeout スイープ ジョブ試用版のタイムアウト値。

目的

名前 形容 価値
ゴール [必須]ハイパーパラメーター調整でサポートされるメトリックの目標を定義します '最大化'
'最小化' (必須)
primaryMetric [必須]最適化するメトリックの名前。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

SweepJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

SamplingAlgorithm

名前 形容 価値
samplingAlgorithmType オブジェクトの種類を設定する ベイジアン
Grid
ランダム の (必須)

BayesianSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム 'Bayesian' (必須)

GridSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム 'Grid' (必須)

RandomSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム 'Random' (必須)
支配 ランダム アルゴリズムの特定の種類 'Random'
'Sobol'
乱数生成のシードとして使用する省略可能な整数 int

TrialComponent

名前 形容 価値
codeId コード資産の ARM リソース ID。
命令 [必須]ジョブの起動時に実行するコマンド。 例えば。 "python train.py" string (必須)

制約:
最小長 = 1
パターン = [a-zA-Z0-9_]
流通 ジョブの配布構成。 設定する場合は、Mpi、Tensorflow、PyTorch、または null のいずれかになります。 DistributionConfiguration
environmentId [必須]ジョブの環境仕様の ARM リソース ID。 string (必須)

制約:
パターン = [a-zA-Z0-9_]
environmentVariables ジョブに含まれる環境変数。 TrialComponentEnvironmentVariables
リソース ジョブのコンピューティング リソース構成。 ResourceConfiguration

TrialComponentEnvironmentVariables

名前 形容 価値
{カスタマイズされたプロパティ}

クイック スタート テンプレート

次のクイック スタート テンプレートでは、このリソースの種類をデプロイします。

テンプレート 形容
Azure Machine Learning AutoML 分類ジョブ を作成する

Azure にデプロイする
このテンプレートでは、Azure Machine Learning AutoML 分類ジョブを作成して、クライアントが金融機関との固定定期預金をサブスクライブするかどうかを予測するための最適なモデルを見つけます。
Azure Machine Learning コマンド ジョブ を作成する

Azure にデプロイする
このテンプレートは、基本的なhello_world スクリプトを使用して Azure Machine Learning コマンド ジョブを作成します
Azure Machine Learning スイープ ジョブ を作成する

Azure
にデプロイする
このテンプレートでは、ハイパーパラメーター調整用の Azure Machine Learning スイープ ジョブが作成されます。

Terraform (AzAPI プロバイダー) リソース定義

ワークスペース/ジョブ リソースの種類は、次を対象とする操作と共にデプロイできます。

  • リソース グループの

各 API バージョンで変更されたプロパティの一覧については、変更ログの参照してください。

リソースの形式

Microsoft.MachineLearningServices/workspaces/jobs リソースを作成するには、次の Terraform をテンプレートに追加します。

resource "azapi_resource" "symbolicname" {
  type = "Microsoft.MachineLearningServices/workspaces/jobs@2022-05-01"
  name = "string"
  parent_id = "string"
  body = jsonencode({
    properties = {
      computeId = "string"
      description = "string"
      displayName = "string"
      experimentName = "string"
      identity = {
        identityType = "string"
        // For remaining properties, see IdentityConfiguration objects
      }
      isArchived = bool
      properties = {
        {customized property} = "string"
      }
      services = {
        {customized property} = {
          endpoint = "string"
          jobServiceType = "string"
          port = int
          properties = {
            {customized property} = "string"
          }
        }
      }
      tags = {}
      jobType = "string"
      // For remaining properties, see JobBaseProperties objects
    }
  })
}

JobBaseProperties オブジェクト

オブジェクトの種類を指定するには、jobType プロパティを設定します。

コマンドの場合は、次のコマンドを使用します。

  jobType = "Command"
  codeId = "string"
  command = "string"
  distribution = {
    distributionType = "string"
    // For remaining properties, see DistributionConfiguration objects
  }
  environmentId = "string"
  environmentVariables = {
    {customized property} = "string"
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  limits = {
    jobLimitsType = "string"
    timeout = "string"
  }
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  resources = {
    instanceCount = int
    instanceType = "string"
    properties = {}
  }

パイプラインの場合は、次を使用します。

  jobType = "Pipeline"
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  jobs = {}
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }

スイープの場合は、次を使用します。

  jobType = "Sweep"
  earlyTermination = {
    delayEvaluation = int
    evaluationInterval = int
    policyType = "string"
    // For remaining properties, see EarlyTerminationPolicy objects
  }
  inputs = {
    {customized property} = {
      description = "string"
      jobInputType = "string"
      // For remaining properties, see JobInput objects
    }
  }
  limits = {
    jobLimitsType = "string"
    maxConcurrentTrials = int
    maxTotalTrials = int
    timeout = "string"
    trialTimeout = "string"
  }
  objective = {
    goal = "string"
    primaryMetric = "string"
  }
  outputs = {
    {customized property} = {
      description = "string"
      jobOutputType = "string"
      // For remaining properties, see JobOutput objects
    }
  }
  samplingAlgorithm = {
    samplingAlgorithmType = "string"
    // For remaining properties, see SamplingAlgorithm objects
  }
  trial = {
    codeId = "string"
    command = "string"
    distribution = {
      distributionType = "string"
      // For remaining properties, see DistributionConfiguration objects
    }
    environmentId = "string"
    environmentVariables = {
      {customized property} = "string"
    }
    resources = {
      instanceCount = int
      instanceType = "string"
      properties = {}
    }
  }

IdentityConfiguration オブジェクト

identityType プロパティを設定して、オブジェクトの種類を指定します。

AMLTokenを する場合は、次を使用します。

  identityType = "AMLToken"

マネージドの場合は、次を使用します。

  identityType = "Managed"
  clientId = "string"
  objectId = "string"
  resourceId = "string"

UserIdentityの場合は、次の値を使用します。

  identityType = "UserIdentity"

DistributionConfiguration オブジェクト

オブジェクトの種類を指定するには、distributionType プロパティを設定します。

Mpiの場合は、次を使用します。

  distributionType = "Mpi"
  processCountPerInstance = int

PyTorchを する場合は、次を使用します。

  distributionType = "PyTorch"
  processCountPerInstance = int

TensorFlowの場合は、次を使用します。

  distributionType = "TensorFlow"
  parameterServerCount = int
  workerCount = int

JobInput オブジェクト

jobInputType プロパティを設定して、オブジェクトの種類を指定します。

custom_modelの場合は、次を使用します。

  jobInputType = "custom_model"
  mode = "string"
  uri = "string"

リテラル の場合は、次の値を使用します。

  jobInputType = "literal"
  value = "string"

mlflow_modelの場合は、次を使用します。

  jobInputType = "mlflow_model"
  mode = "string"
  uri = "string"

mltableを する場合は、次を使用します。

  jobInputType = "mltable"
  mode = "string"
  uri = "string"

triton_modelの場合は、次を使用します。

  jobInputType = "triton_model"
  mode = "string"
  uri = "string"

uri_fileの場合は、次を使用します。

  jobInputType = "uri_file"
  mode = "string"
  uri = "string"

uri_folderの場合は、次を使用します。

  jobInputType = "uri_folder"
  mode = "string"
  uri = "string"

JobOutput オブジェクト

オブジェクトの種類を指定するには、jobOutputType プロパティを設定します。

custom_modelの場合は、次を使用します。

  jobOutputType = "custom_model"
  mode = "string"
  uri = "string"

mlflow_modelの場合は、次を使用します。

  jobOutputType = "mlflow_model"
  mode = "string"
  uri = "string"

mltableを する場合は、次を使用します。

  jobOutputType = "mltable"
  mode = "string"
  uri = "string"

triton_modelの場合は、次を使用します。

  jobOutputType = "triton_model"
  mode = "string"
  uri = "string"

uri_fileの場合は、次を使用します。

  jobOutputType = "uri_file"
  mode = "string"
  uri = "string"

uri_folderの場合は、次を使用します。

  jobOutputType = "uri_folder"
  mode = "string"
  uri = "string"

EarlyTerminationPolicy オブジェクト

policyType プロパティを設定して、オブジェクトの種類を指定します。

バンディットの場合は、次を使用します。

  policyType = "Bandit"
  slackAmount = int
  slackFactor = int

MedianStopping の場合は、次の値を使用します。

  policyType = "MedianStopping"

TruncationSelectionの場合は、次のコマンドを使用します。

  policyType = "TruncationSelection"
  truncationPercentage = int

SamplingAlgorithm オブジェクト

samplingAlgorithmType プロパティを設定して、オブジェクトの種類を指定します。

ベイジアン の場合は、次を使用します。

  samplingAlgorithmType = "Bayesian"

Gridの場合は、次を使用します。

  samplingAlgorithmType = "Grid"

ランダムには、次の値を使用します。

  samplingAlgorithmType = "Random"
  rule = "string"
  seed = int

プロパティ値

workspaces/jobs

名前 形容 価値
種類 リソースの種類 "Microsoft.MachineLearningServices/workspaces/jobs@2022-05-01"
名前 リソース名 string (必須)
parent_id このリソースの親であるリソースの ID。 種類のリソースの ID: ワークスペース
プロパティ [必須]エンティティの追加の属性。 JobBaseProperties (必須)

JobBaseProperties

名前 形容 価値
computeId コンピューティング リソースの ARM リソース ID。
形容 資産の説明テキスト。
displayName ジョブの表示名。
experimentName ジョブが属する実験の名前。 設定されていない場合、ジョブは "既定" の実験に配置されます。
同一性 ID の構成。 設定する場合は、AmlToken、ManagedIdentity、UserIdentity、または null のいずれかになります。
null の場合、既定値は AmlToken になります。
IdentityConfiguration
isArchived 資産はアーカイブされていますか? bool
プロパティ 資産プロパティ ディクショナリ。 ResourceBaseProperties
サービス JobEndpoints の一覧。
ローカル ジョブの場合、ジョブ エンドポイントのエンドポイント値は FileStreamObject になります。
JobBaseServices
タグ タグ ディクショナリ。 タグは追加、削除、更新できます。 オブジェクト
jobType オブジェクトの種類を設定する コマンド
パイプラインの
スイープ (必須)

IdentityConfiguration

名前 形容 価値
identityType オブジェクトの種類を設定する AMLToken を する
マネージド

UserIdentity (必須)

AmlToken

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 "AMLToken" (必須)

ManagedIdentity

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 "マネージド" (必須)
clientId クライアント ID でユーザー割り当て ID を指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

制約:
最小長 = 36
最大長 = 36
パターン = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
objectId ユーザー割り当て ID をオブジェクト ID で指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

制約:
最小長 = 36
最大長 = 36
パターン = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$
resourceId ARM リソース ID でユーザー割り当て ID を指定します。 システム割り当ての場合は、このフィールドを設定しないでください。

UserIdentity

名前 形容 価値
identityType [必須]ID フレームワークの種類を指定します。 "UserIdentity" (必須)

ResourceBaseProperties

名前 形容 価値
{カスタマイズされたプロパティ}

JobBaseServices

名前 形容 価値
{カスタマイズされたプロパティ} JobService

JobService

名前 形容 価値
エンドポイント エンドポイントの URL。
jobServiceType エンドポイントの種類。
エンドポイントのポート。 int
プロパティ エンドポイントに設定する追加のプロパティ。 JobServiceProperties

JobServiceProperties

名前 形容 価値
{カスタマイズされたプロパティ}

CommandJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 "Command" (必須)
codeId コード資産の ARM リソース ID。
命令 [必須]ジョブの起動時に実行するコマンド。 例えば。 "python train.py" string (必須)

制約:
最小長 = 1
パターン = [a-zA-Z0-9_]
流通 ジョブの配布構成。 設定する場合は、Mpi、Tensorflow、PyTorch、または null のいずれかになります。 DistributionConfiguration
environmentId [必須]ジョブの環境仕様の ARM リソース ID。 string (必須)

制約:
パターン = [a-zA-Z0-9_]
environmentVariables ジョブに含まれる環境変数。 CommandJobEnvironmentVariables
入力 ジョブで使用される入力データ バインディングのマッピング。 CommandJobInputs
切り コマンド ジョブの制限。 CommandJobLimits
出力 ジョブで使用される出力データ バインディングのマッピング。 CommandJobOutputs
リソース ジョブのコンピューティング リソース構成。 ResourceConfiguration

DistributionConfiguration

名前 形容 価値
distributionType オブジェクトの種類を設定する Mpi
PyTorch を する
TensorFlow (必須)

Mpi

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 "Mpi" (必須)
processCountPerInstance MPI ノードあたりのプロセス数。 int

PyTorch

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 "PyTorch" (必須)
processCountPerInstance ノードあたりのプロセス数。 int

TensorFlow

名前 形容 価値
distributionType [必須]ディストリビューション フレームワークの種類を指定します。 "TensorFlow" (必須)
parameterServerCount パラメーター サーバー タスクの数。 int
workerCount ワーカーの数。 指定しない場合は、既定でインスタンス数が設定されます。 int

CommandJobEnvironmentVariables

名前 形容 価値
{カスタマイズされたプロパティ}

CommandJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

JobInput

名前 形容 価値
形容 入力の説明。
jobInputType オブジェクトの種類を設定する custom_model
リテラル
mlflow_model
mltable
する
triton_model
uri_file
uri_folder (必須)

CustomModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 "custom_model" (必須)
モード 入力資産配信モード。 "Direct"
"ダウンロード"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

LiteralJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 "literal" (必須)
価値 [必須]入力のリテラル値。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

MLFlowModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 "mlflow_model" (必須)
モード 入力資産配信モード。 "Direct"
"ダウンロード"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

MLTableJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 "mltable" (必須)
モード 入力資産配信モード。 "Direct"
"ダウンロード"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

TritonModelJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 "triton_model" (必須)
モード 入力資産配信モード。 "Direct"
"ダウンロード"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

UriFileJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 "uri_file" (必須)
モード 入力資産配信モード。 "Direct"
"ダウンロード"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

UriFolderJobInput

名前 形容 価値
jobInputType [必須]ジョブの種類を指定します。 "uri_folder" (必須)
モード 入力資産配信モード。 "Direct"
"ダウンロード"
"EvalDownload"
"EvalMount"
"ReadOnlyMount"
"ReadWriteMount"
uri [必須]入力資産 URI。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

CommandJobLimits

名前 形容 価値
jobLimitsType [必須]JobLimit 型。 "Command"
"スイープ" (必須)
タイムアウト ISO 8601 形式の最大実行時間。その後、ジョブは取り消されます。 秒という低い精度の期間のみをサポートします。

CommandJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

JobOutput

名前 形容 価値
形容 出力の説明。
jobOutputType オブジェクトの種類を設定する custom_model
mlflow_model
mltable を する
triton_model
uri_file
uri_folder (必須)

CustomModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 "custom_model" (必須)
モード 出力資産配信モード。 "ReadWriteMount"
"アップロード"
uri 出力アセット URI。

MLFlowModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 "mlflow_model" (必須)
モード 出力資産配信モード。 "ReadWriteMount"
"アップロード"
uri 出力アセット URI。

MLTableJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 "mltable" (必須)
モード 出力資産配信モード。 "ReadWriteMount"
"アップロード"
uri 出力アセット URI。

TritonModelJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 "triton_model" (必須)
モード 出力資産配信モード。 "ReadWriteMount"
"アップロード"
uri 出力アセット URI。

UriFileJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 "uri_file" (必須)
モード 出力資産配信モード。 "ReadWriteMount"
"アップロード"
uri 出力アセット URI。

UriFolderJobOutput

名前 形容 価値
jobOutputType [必須]ジョブの種類を指定します。 "uri_folder" (必須)
モード 出力資産配信モード。 "ReadWriteMount"
"アップロード"
uri 出力アセット URI。

ResourceConfiguration

名前 形容 価値
instanceCount コンピューティング 先で使用されるインスタンスまたはノードの数 (省略可能)。 int
instanceType コンピューティング 先でサポートされている VM のオプションの種類。
プロパティ 追加のプロパティ バッグ。 ResourceConfigurationProperties

ResourceConfigurationProperties

名前 形容 価値
{カスタマイズされたプロパティ}

PipelineJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 "Pipeline" (必須)
入力 パイプライン ジョブの入力。 PipelineJobInputs
ジョブ ジョブはパイプライン ジョブを構築します。 PipelineJobs
出力 パイプライン ジョブの出力 PipelineJobOutputs
設定 ContinueRunOnStepFailure などのパイプライン設定。

PipelineJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

PipelineJobs

名前 形容 価値
{カスタマイズされたプロパティ}

PipelineJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

SweepJob

名前 形容 価値
jobType [必須]ジョブの種類を指定します。 "スイープ" (必須)
earlyTermination 早期終了ポリシーを使用すると、実行が完了する前にパフォーマンスの低い実行を取り消す EarlyTerminationPolicy
入力 ジョブで使用される入力データ バインディングのマッピング。 SweepJobInputs
切り スイープ ジョブの制限。 SweepJobLimits
目的 [必須]最適化の目的。 目標 (必須)
出力 ジョブで使用される出力データ バインディングのマッピング。 SweepJobOutputs
samplingAlgorithm [必須]ハイパーパラメーター サンプリング アルゴリズム SamplingAlgorithm (必須)
searchSpace [必須]各パラメーターとその分布を含むディクショナリ。 ディクショナリ キーはパラメーターの名前です
裁判 [必須]試用版コンポーネントの定義。 TrialComponent (必須)

EarlyTerminationPolicy

名前 形容 価値
delayEvaluation 最初の評価を遅らせる間隔の数。 int
evaluationInterval ポリシー評価間の間隔 (実行回数)。 int
policyType オブジェクトの種類を設定する バンディット
MedianStopping
TruncationSelection (必須)

BanditPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 "Bandit" (必須)
slackAmount 最高のパフォーマンスを発揮する実行から許容される絶対距離。 int
slackFactor 最もパフォーマンスの高い実行からの許容距離の比率。 int

MedianStoppingPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 "MedianStopping" (必須)

TruncationSelectionPolicy

名前 形容 価値
policyType [必須]ポリシー構成の名前 "TruncationSelection" (必須)
truncationPercentage 各評価間隔で取り消す実行の割合。 int

SweepJobInputs

名前 形容 価値
{カスタマイズされたプロパティ} JobInput を する

SweepJobLimits

名前 形容 価値
jobLimitsType [必須]JobLimit 型。 "Command"
"スイープ" (必須)
maxConcurrentTrials スイープ ジョブの最大同時試行回数。 int
maxTotalTrials スイープ ジョブの最大試行回数。 int
タイムアウト ISO 8601 形式の最大実行時間。その後、ジョブは取り消されます。 秒という低い精度の期間のみをサポートします。
trialTimeout スイープ ジョブ試用版のタイムアウト値。

目的

名前 形容 価値
ゴール [必須]ハイパーパラメーター調整でサポートされるメトリックの目標を定義します "最大化"
"最小化" (必須)
primaryMetric [必須]最適化するメトリックの名前。 string (必須)

制約:
パターン = [a-zA-Z0-9_]

SweepJobOutputs

名前 形容 価値
{カスタマイズされたプロパティ} JobOutput

SamplingAlgorithm

名前 形容 価値
samplingAlgorithmType オブジェクトの種類を設定する ベイジアン
Grid
ランダム の (必須)

BayesianSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム "Bayesian" (必須)

GridSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム "Grid" (必須)

RandomSamplingAlgorithm

名前 形容 価値
samplingAlgorithmType [必須]構成プロパティと共にハイパーパラメーター値を生成するために使用されるアルゴリズム "Random" (必須)
支配 ランダム アルゴリズムの特定の種類 "Random"
"Sobol"
乱数生成のシードとして使用する省略可能な整数 int

TrialComponent

名前 形容 価値
codeId コード資産の ARM リソース ID。
命令 [必須]ジョブの起動時に実行するコマンド。 例えば。 "python train.py" string (必須)

制約:
最小長 = 1
パターン = [a-zA-Z0-9_]
流通 ジョブの配布構成。 設定する場合は、Mpi、Tensorflow、PyTorch、または null のいずれかになります。 DistributionConfiguration
environmentId [必須]ジョブの環境仕様の ARM リソース ID。 string (必須)

制約:
パターン = [a-zA-Z0-9_]
environmentVariables ジョブに含まれる環境変数。 TrialComponentEnvironmentVariables
リソース ジョブのコンピューティング リソース構成。 ResourceConfiguration

TrialComponentEnvironmentVariables

名前 形容 価値
{カスタマイズされたプロパティ}