方法 : Direct3D オブジェクトを変換する

更新 : 2007 年 11 月

ワールド変換を使用すると、シーン内の Direct3D オブジェクトを移動できます。

Bb397804.alert_note(ja-jp,VS.90).gifメモ :

マネージ Direct3D モバイル アプリケーションでは、Windows Mobile Version 5.0 Software for Pocket PC と Windows Mobile Version 5.0 Software for Smartphone が必要です。Windows Mobile ソフトウェアおよび SDK については、「.NET Compact Framework の外部資料」を参照してください。

ワールド空間は、すべての方向に無限に伸びる 3 次元のデカルト空間に似ています。ビュー変換でワールド空間からスクリーン空間にオブジェクトを変換する前に、ワールド空間内に配置する Direct3D オブジェクトの位置をワールド変換で定義します。ワールド変換を使用すると、Direct3D オブジェクトを変換 (移動)、回転、およびサイズ調整できます。

1 つのオブジェクトに対する複数のワールド変換を結合するには、それらの変換行列を掛け合わせる必要があります。次の例では、Multiply メソッドを使用して回転行列と平行移動行列を掛け合わせます。目的の結果を得るには、行列を正しい順序で変換する必要があります。たとえば、回転行列と平行移動行列を掛け合わせるには、次の例に示すように、平行移動の前に回転を変換する必要があります。

使用例

次の例は、船を表す基本的な四角形のメッシュをアニメーション表示します。この例は、次のオブジェクトが含まれた完全なフォームを提供します。

  • 船を表す基本的な Mesh オブジェクト。

  • 建物を表す基本的な Mesh オブジェクトのセット。

  • 光を表示するいくつかの Light オブジェクト。これらのオブジェクトの 1 つは、船のエンジンからの光を表します。

  • Device オブジェクト。

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports Microsoft.WindowsMobile.DirectX
Imports Microsoft.WindowsMobile.DirectX.Direct3D



Class MatrixTransformsHowTo
    Inherits Form
    ' Mesh representing the ship.
    Private shipMesh As Mesh = Nothing
    ' Meshes representing buildings.
    Private wallMeshes(2) As Mesh

    Private meshColor As Color = Color.Goldenrod

    ' Description of the Direct3D light.
    Private lightData As Light

    Private device As Device


    Private Enum ShipStatus
        SS_LIFTOFF = 1
        SS_TURNING = 2
        SS_ENGINEON = 3
    End Enum
    Private myShipStatus As ShipStatus = ShipStatus.SS_LIFTOFF

    Private firstTick As Integer = 0
    Private newTick As Integer = 0

    Private yVal As Single = - 2F
    Private zVal As Single = 2F
    Private Const midAltitude As Integer = 85

    Private yCameraPosition As Single = - 1
    Private xCameraPosition As Single = - 2

    Private startAngle As Single = 0F
    Private angle As Single = 0.1F
    Private lastIncrement As Single = 0F

    Private isEngineFired As Boolean = False
    Private isShipDeparted As Boolean = False
    Private isNewRotationOperation As Boolean = True


    Public Sub New() 

        Dim present As PresentParameters

        Me.Text = "Flying Ship"

        ' Enable the form to be closed.
        ' Required so that Hwnd of the form changes.
        Me.MinimizeBox = False

        present = New PresentParameters()
        present.Windowed = True
        present.AutoDepthStencilFormat = DepthFormat.D16
        present.EnableAutoDepthStencil = True
        present.SwapEffect = SwapEffect.Discard

        device = New Device(0, DeviceType.Default, Me, CreateFlags.None, present)
        AddHandler device.DeviceReset, AddressOf OnDeviceReset

        Dim i As Integer
        For i = 0 To wallMeshes.Length
            wallMeshes(i) = Nothing
        Next i

        OnDeviceReset(Nothing, EventArgs.Empty)

    End Sub


    Private Sub OnDeviceReset(ByVal sender As Object, ByVal e As EventArgs) 
        ' Meshes must be recreated whenever the device
        ' is reset, no matter which pool they are created in.
        ' Instead of loading a mesh from a file,
        ' this sample uses primitive box meshes
        ' to represent the ship and the buildings.
        shipMesh = Mesh.Box(device, 0.8F, 0.18F, 2.2F)

        wallMeshes(0) = Mesh.Box(device, 0.5F, 3.6F, 1F)
        wallMeshes(1) = Mesh.Box(device, 0.5F, 1.8F, 2F)
        wallMeshes(2) = Mesh.Box(device, 0.2F, 1F, 0.75F)

        device.RenderState.Ambient = Color.White

        ' Provides main directional lighting.
        device.Lights(0).Type = LightType.Directional
        device.Lights(0).Direction = New Vector3(0.3F, - 0.5F, 0.2F)
        device.Lights(0).Diffuse = Color.LightBlue
        device.Lights(0).Update()

        ' Provides frontal lighting.
        device.Lights(1).Type = LightType.Directional
        device.Lights(1).Direction = New Vector3(0F, - 1F, - 3F)
        device.Lights(1).Diffuse = Color.DarkSlateGray
        device.Lights(1).Update()

        ' Turn on the lights.
        device.Lights(0).Enabled = True
        device.Lights(1).Enabled = True
        ' Turn off the light representing the engine.
        device.Lights(2).Enabled = False

        ' For the projection matrix, set up a perspective transform (which
        ' transforms geometry from 3-D view space to 2-D viewport space, with
        ' a perspective divide that makes objects smaller in the distance). To build
        ' a perspective transform, you need the field of view (1/4 PI is common),
        ' the aspect ratio, and the near and far clipping planes (which define at
        ' the distances at which geometry should be no longer be rendered).
        device.Transform.Projection = Matrix.PerspectiveFovLH(System.Convert.ToSingle(Math.PI) / 4F, System.Convert.ToSingle(Me.ClientSize.Width) / System.Convert.ToSingle(Me.ClientSize.Height), 1F, 80F)

    End Sub


    Protected Overrides Sub OnPaintBackground(ByVal e As PaintEventArgs) 
        ' Do nothing.
    End Sub


    Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs) 
        Dim material As New Material()
        Dim engineMaterial As New Material()

        ' Begin the scene and clear the back buffer to black.
        device.Clear(ClearFlags.Target Or ClearFlags.ZBuffer, Color.Black, 1F, 0)

        device.BeginScene()

        material.Diffuse = Color.WhiteSmoke
        ' Specifies the ambient color for the engines.
        engineMaterial.Ambient = Color.White

        SetupMatrices()

        device.Material = material

        ' Draw ship on the screen.
        shipMesh.DrawSubset(0)
        SetupMovingLight()

        If isEngineFired Then
            device.Material = engineMaterial
            device.Lights(2).Enabled = True
            ' Bind the vertex buffers of the primitive
            ' mesh to the Device object.
            device.SetStreamSource(0, shipMesh.VertexBuffer, 0)
            ' Redraw the face of the ship representing the engine.
            ' A Box mesh has 4 vertices per face. The 20th vertex
            ' is the first vertex representing the engine. To use
            ' adjacent triangles, set the type to Primitive.TriangleFan.
            device.DrawPrimitives(PrimitiveType.TriangleFan, 20, 2)
        End If

        material.Diffuse = Color.GhostWhite
        device.Material = material

        ' Draw buildings, providing coordinates to locate each
        ' building on the x, y, and z planes. Because the camera is placed
        ' "behind" the scene initially (at a positive z-axis value in
        ' the call to Matrix.LookAtLH), positive z-axis values draw
        ' objects closer to the camera. In addition, positive x-axis
        ' values draw objects farther to the left instead of to the right.
        ' Draw the tall building.
        device.Transform.World = Matrix.Translation(0.75F, - 0.2F, - 2F)
        wallMeshes(0).DrawSubset(0)

        ' Draw the medium-sized buildings.
        device.Transform.World = Matrix.Translation(- 1F, - 0.9F, 0F)
        wallMeshes(1).DrawSubset(0)
        device.Transform.World = Matrix.Translation(0F, - 0.9F, 0F)
        wallMeshes(1).DrawSubset(0)
        device.Transform.World = Matrix.Translation(1F, - 0.9F, 0F)
        wallMeshes(1).DrawSubset(0)
        device.Transform.World = Matrix.Translation(2F, - 0.9F, 0F)
        wallMeshes(1).DrawSubset(0)

        ' Draw the small buildings.
        device.Transform.World = Matrix.Translation(- 2F, - 1.5F, 5F)
        wallMeshes(2).DrawSubset(0)
        device.Transform.World = Matrix.Translation(- 1.25F, - 1.5F, 5F)
        wallMeshes(2).DrawSubset(0)
        device.Transform.World = Matrix.Translation(- 0.5F, - 1.5F, 5F)
        wallMeshes(2).DrawSubset(0)
        device.Transform.World = Matrix.Translation(0.75F, - 1.5F, 5F)
        wallMeshes(2).DrawSubset(0)

        ' Finish the scene and present it on the screen.
        device.EndScene()
        device.Present()

        ' Repaint the scene.
        Me.Invalidate()

    End Sub

    Private Sub SetupMatrices() 
        ' Set the transformation matrices.
        Dim fAngle As Single = angle

        ' To render the ship, combine a rotation on the y-axis with a
        ' translation (move) using the Matrix.Multiply method.
        device.Transform.World = Matrix.Multiply(Matrix.RotationY(fAngle + startAngle), Matrix.Translation(- 0.5F, yVal, zVal))

        ' Set up the view matrix. You can define a view matrix with a camera position,
        ' a point to look at (camera target), and an "up" direction.
        ' First vector passed to LookAtLH is the camera position.
        ' Second vector passed to LookAtLH is the camera target.
        ' Third vector passed to LookAtLH defines the "up" direction.
        ' In this example, you set the camera seven units up along the z-axis ("behind"
        ' the scene), down one unit, and left two units. You then point the camera
        ' just above the origin and define "up" to be in the y-direction.
        If Not isShipDeparted Then
            device.Transform.View = Matrix.LookAtLH(New Vector3(- 2, - 1, 7), New Vector3(0, 1, 0), New Vector3(0, 1, 0))
        Else
            ' Handles movement of camera after 
            ' the ship "fires" the main engines.
            device.Transform.View = Matrix.LookAtLH(New Vector3(xCameraPosition, yCameraPosition, 7), New Vector3(0, 1, 0), New Vector3(0, 1, 0))
            xCameraPosition += 0.01F
            yCameraPosition += 0.01F
        End If
        ' Use the system time to control the animation.
        ' The high-resolution timer, if present for
        ' the hardware, could be used instead.
        Dim tick As Integer = System.Environment.TickCount
        If newTick = 0 Then
            firstTick = tick / 100
        End If
        newTick = tick / 100 - firstTick + 1

        ' Use the tick count to change the current
        ' ship status. Animation is then
        ' dependent on the current status.
        If newTick <= 10 Then
            myShipStatus = ShipStatus.SS_LIFTOFF
        ElseIf newTick <= midAltitude Then
            myShipStatus = ShipStatus.SS_TURNING
        Else
            myShipStatus = ShipStatus.SS_ENGINEON
        End If 
        Select Case myShipStatus
            Case ShipStatus.SS_LIFTOFF
                yVal += 0.015F
            Case ShipStatus.SS_TURNING
                yVal += 0.015F
                angle = SetRotation(angle, 180F)
            Case ShipStatus.SS_ENGINEON
                isEngineFired = True
                zVal = zVal - 0.04F
                yVal = yVal + 0.005F
                angle = SetRotation(angle, 180F)
                If newTick > midAltitude + 30 Then
                    isShipDeparted = True
                End If
        End Select

    End Sub

    Private Function SetRotation(ByVal tempAngle As Single, ByVal rotationThreshold As Single) As Single 
        ' SetRotation manipulates rotation values to simulate a vessel that
        ' gradually increases in turning speed, and then slows to
        ' a stop. rotationThreshold should be <= 180 degrees.
        If isNewRotationOperation Then
            ' Reset values if this is a new rotation operation.
            ' Starting angle of ship must be added back in
            ' before the call to Matrix.RotationY.
            tempAngle = 0.1F
            isNewRotationOperation = False
        End If
        rotationThreshold = DegreesToRadians(rotationThreshold)

        If tempAngle < rotationThreshold Then
            Dim increment As Single = tempAngle
            ' Provide a gradual but increasing turning speed.
            tempAngle *= 1.015F
            lastIncrement = tempAngle - increment
            Return tempAngle
        Else
            ' Provide a gradual slowing to a stop.
            tempAngle += lastIncrement * 0.75F
            lastIncrement = lastIncrement * 0.75F
            Return tempAngle
        End If

    End Function

    Private Function DegreesToRadians(ByVal degrees As Single) As Single 
        Dim radians As Single = degrees *(3.141593F / 180F)
        Return radians

    End Function

    Private Sub SetupMovingLight() 
        device.Lights(2).Type = LightType.Point
        lightData = device.Lights(2)

        device.Lights(2).Diffuse = Color.White
        device.Lights(2).Range = 200F

        If Not device.DeviceCaps.VertexProcessingCaps.SupportsPositionalLights Then
            If device.LightsFixed(2).Type = LightType.Point Then
                device.LightsFixed(2).Type = LightType.Directional
            End If
        End If 
        ' Handle positioning for the light that emanates
        ' from the ship, representing the light from
        ' the main engines.
        Select Case device.Lights(2).Type
            Case LightType.Point
                device.Lights(2).Position = New Vector3(0, yVal, zVal)
                device.Lights(2).Attenuation1 = 0.2F
            Case LightType.Directional
        End Select ' Not implemented.
        device.Lights(2).Update()

    End Sub


    Shared Sub Main() 
        Try
            Dim d3dApp As New MatrixTransformsHowTo()
            System.Windows.Forms.Application.Run(d3dApp)
        Catch 
            MessageBox.Show("Your device does not have the needed 3-D " + "support to run this sample")
        Catch 
            MessageBox.Show("Your device does not have the needed 3-D " + "support to run this sample")
        Catch e As Exception
            MessageBox.Show("The sample has run into an error and needs" + "to close: " + e.Message)
        End Try

    End Sub
End Class
using System;
using System.Drawing;
using System.Windows.Forms;
using Microsoft.WindowsMobile.DirectX;
using Microsoft.WindowsMobile.DirectX.Direct3D;

namespace MatrixTransforms
{
    class MatrixTransformsHowTo : Form
    {
        // Mesh representing the ship.
        Mesh shipMesh = null;
        // Meshes representing buildings.
        Mesh[] wallMeshes = new Mesh[3];

        Color meshColor = Color.Goldenrod;

        // Description of the Direct3D light.
        private Light lightData;

        Device device;

        private enum ShipStatus
        {
            SS_LIFTOFF = 1,
            SS_TURNING = 2,
            SS_ENGINEON = 3
        }
        ShipStatus myShipStatus = ShipStatus.SS_LIFTOFF;

        int firstTick = 0;
        int newTick = 0;

        float yVal = -2.0f;
        float zVal = 2.0f;
        const int midAltitude = 85;

        float yCameraPosition = -1;
        float xCameraPosition = -2;

        float startAngle = 0.0f;
        float angle = 0.1f;
        float lastIncrement = 0.0f;

        bool isEngineFired = false;
        bool isShipDeparted = false;
        bool isNewRotationOperation = true;

        public MatrixTransformsHowTo()
        {

            PresentParameters present;

            this.Text = "Flying Ship";

            // Enable the form to be closed.
            // Required so that Hwnd of the form changes.
            this.MinimizeBox = false;

            present = new PresentParameters();
            present.Windowed = true;
            present.AutoDepthStencilFormat = DepthFormat.D16;
            present.EnableAutoDepthStencil = true;
            present.SwapEffect = SwapEffect.Discard;

            device = new Device(0, DeviceType.Default, this,
                                CreateFlags.None, present);
            device.DeviceReset += new EventHandler(OnDeviceReset);

            for (int i = 0; i < wallMeshes.Length; i++)
            {
                wallMeshes[i] = null;
            }

            OnDeviceReset(null, EventArgs.Empty);
        }

        private void OnDeviceReset(object sender, EventArgs e)
        {
            // Meshes must be recreated whenever the device
            // is reset, no matter which pool they are created in.

            // Instead of loading a mesh from a file,
            // this sample uses primitive box meshes
            // to represent the ship and the buildings.
            shipMesh = Mesh.Box(device, .8f, 0.18f, 2.2f);

            wallMeshes[0] = Mesh.Box(device, 0.5f, 3.6f, 1.0f);
            wallMeshes[1] = Mesh.Box(device, 0.5f, 1.8f, 2.0f);
            wallMeshes[2] = Mesh.Box(device, .2f, 1.0f, 0.75f);

            device.RenderState.Ambient = Color.White;

            // Provides main directional lighting.
            device.Lights[0].Type = LightType.Directional;
            device.Lights[0].Direction = new Vector3(0.3f, -0.5f, 0.2f);
            device.Lights[0].Diffuse = Color.LightBlue;
            device.Lights[0].Update();

            // Provides frontal lighting.
            device.Lights[1].Type = LightType.Directional;
            device.Lights[1].Direction = new Vector3(0.0f, -1.0f, -3.0f);
            device.Lights[1].Diffuse = Color.DarkSlateGray;
            device.Lights[1].Update();

            // Turn on the lights.
            device.Lights[0].Enabled = true;
            device.Lights[1].Enabled = true;
            // Turn off the light representing the engine.
            device.Lights[2].Enabled = false;

            // For the projection matrix, set up a perspective transform (which
            // transforms geometry from 3-D view space to 2-D viewport space, with
            // a perspective divide that makes objects smaller in the distance). To build
            // a perspective transform, you need the field of view (1/4 PI is common),
            // the aspect ratio, and the near and far clipping planes (which define at
            // the distances at which geometry should be no longer be rendered).
            device.Transform.Projection = Matrix.PerspectiveFovLH((float)Math.PI / 4.0F,
                (float)this.ClientSize.Width / (float)this.ClientSize.Height,
                1.0f, 80.0f);
        }

        protected override void OnPaintBackground(PaintEventArgs e)
        {
            // Do nothing.
        }

        protected override void OnPaint(PaintEventArgs e)
        {
            Material material = new Material();
            Material engineMaterial = new Material();

            // Begin the scene and clear the back buffer to black.
            device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.Black, 
                1.0f, 0);

            device.BeginScene();

            material.Diffuse = Color.WhiteSmoke;
            // Specifies the ambient color for the engines.
            engineMaterial.Ambient = Color.White;

            SetupMatrices();

            device.Material = material;

            // Draw ship on the screen.
            shipMesh.DrawSubset(0);
            SetupMovingLight();

            if (isEngineFired)
            {
                device.Material = engineMaterial;
                device.Lights[2].Enabled = true;
                // Bind the vertex buffers of the primitive
                // mesh to the Device object.
                device.SetStreamSource(0, shipMesh.VertexBuffer, 0);
                // Redraw the face of the ship representing the engine.
                // A Box mesh has 4 vertices per face. The 20th vertex
                // is the first vertex representing the "engine." To use
                // adjacent triangles, set the type to Primitive.TriangleFan.
                device.DrawPrimitives(PrimitiveType.TriangleFan, 20, 2);
            }

            material.Diffuse = Color.GhostWhite;
            device.Material = material;

            // Draw buildings, providing coordinates to locate each
            // building on the x, y, and z planes. Because the camera is placed
            // "behind" the scene initially (at a positive z-axis value in
            // the call to Matrix.LookAtLH), positive z-axis values draw
            // objects closer to the camera. In addition, positive x-axis
            // values draw objects farther to the left instead of to the right.

            // Draw the tall building.
            device.Transform.World = Matrix.Translation(.75f, -0.2f, -2.0f);
            wallMeshes[0].DrawSubset(0);

            // Draw the medium-sized buildings.
            device.Transform.World = Matrix.Translation(-1.0f, -0.9f, 0.0f);
            wallMeshes[1].DrawSubset(0);
            device.Transform.World = Matrix.Translation(0.0f, -0.9f, 0.0f);
            wallMeshes[1].DrawSubset(0);
            device.Transform.World = Matrix.Translation(1.0f, -0.9f, 0.0f);
            wallMeshes[1].DrawSubset(0);
            device.Transform.World = Matrix.Translation(2.0f, -0.9f, 0.0f);
            wallMeshes[1].DrawSubset(0);

            // Draw the small buildings.
            device.Transform.World = Matrix.Translation(-2.0f, -1.5f, 5.0f);
            wallMeshes[2].DrawSubset(0);
            device.Transform.World = Matrix.Translation(-1.25f, -1.5f, 5.0f);
            wallMeshes[2].DrawSubset(0);
            device.Transform.World = Matrix.Translation(-0.5f, -1.5f, 5.0f);
            wallMeshes[2].DrawSubset(0);
            device.Transform.World = Matrix.Translation(0.75f, -1.5f, 5.0f);
            wallMeshes[2].DrawSubset(0);

            // Finish the scene and present it on the screen.
            device.EndScene();
            device.Present();

            // Repaint the scene.
            this.Invalidate();
        }
        private void SetupMatrices()
        {
            // Set the transformation matrices.

            float fAngle = angle;

            // To render the ship, combine a rotation on the y-axis with a
            // translation (move) using the Matrix.Multiply method.
            device.Transform.World = Matrix.Multiply(Matrix.RotationY(fAngle + startAngle), Matrix.Translation(-0.5f, yVal, zVal));

            // Set up the view matrix. You can define a view matrix with a camera position,
            // a point to look at (camera target), and an "up" direction.
            // First vector passed to LookAtLH is the camera position.
            // Second vector passed to LookAtLH is the camera target.
            // Third vector passed to LookAtLH defines the "up" direction.
            // Here, you set the camera seven units up along the z-axis ("behind"
            // the scene), down one unit, and left two units. You then point the camera
            // just above the origin and define "up" to be in the y-direction.
            if (!isShipDeparted)
            {
                device.Transform.View = Matrix.LookAtLH(new Vector3(-2, -1, 7),
                    new Vector3(0, 1, 0), new Vector3(0, 1, 0));
            }
            else
            {
                // Handles movement of camera after 
                // the ship "fires" the main engines.
                device.Transform.View = Matrix.LookAtLH(new Vector3(xCameraPosition, 
                    yCameraPosition, 7), new Vector3(0, 1, 0), new Vector3(0, 1, 0));
                xCameraPosition += 0.01f;
                yCameraPosition += 0.01f;
            }

            // Use the system time to control the animation.
            // The high-resolution timer, if present for
            // the hardware, could be used instead.
            int tick = System.Environment.TickCount;
            if (newTick == 0) { firstTick = tick / 100; }
            newTick = (tick / 100) - firstTick + 1;

            // Use the tick count to change the current
            // ship status. Animation is then
            // dependent on the current status.
            if (newTick <= 10) { myShipStatus = ShipStatus.SS_LIFTOFF; }
            else if (newTick <= midAltitude) { myShipStatus = ShipStatus.SS_TURNING; }
            else { myShipStatus = ShipStatus.SS_ENGINEON; }

            switch (myShipStatus)
            {
                case ShipStatus.SS_LIFTOFF:
                    yVal += 0.015f;
                    break;
                case ShipStatus.SS_TURNING:
                    yVal += 0.015f;
                    angle = SetRotation(angle, 180.0f);
                    break;
                case ShipStatus.SS_ENGINEON:
                    isEngineFired = true;
                    zVal = zVal - 0.04f;
                    yVal = yVal + 0.005f;
                    angle = SetRotation(angle, 180.0f);
                    if (newTick > midAltitude + 30) { isShipDeparted = true; }
                    break;
            }
        }

        private float SetRotation(float tempAngle, float rotationThreshold)
        {
            // SetRotation manipulates rotation values to simulate a vessel that
            // gradually increases in turning speed, and then slows to
            // a stop. rotationThreshold should be <= 180 degrees.
            if (isNewRotationOperation)
            {
                // Reset values if this is a new rotation operation.
                // Starting angle of ship must be added back in
                // before the call to Matrix.RotationY.
                tempAngle = 0.1f;
                isNewRotationOperation = false;
            }
            rotationThreshold = DegreesToRadians(rotationThreshold);

            if (tempAngle < rotationThreshold)
            {
                float increment = tempAngle;
                // Provide a gradual but increasing turning speed.
                tempAngle *= 1.015f;
                lastIncrement = tempAngle - increment;
                return tempAngle;
            }
            else
            {
                // Provide a gradual slowing to a stop.
                tempAngle += (lastIncrement * 0.75f);
                lastIncrement = lastIncrement * 0.75f;
                return tempAngle;
            }
        }

        private float DegreesToRadians(float degrees)
        {
            float radians = degrees * (3.141592654f / 180.0f);
            return radians;
        }
        private void SetupMovingLight()
        {
            device.Lights[2].Type = LightType.Point;
            lightData = device.Lights[2];

            device.Lights[2].Diffuse = Color.White;
            device.Lights[2].Range = 200.0f;

            if(!device.DeviceCaps.VertexProcessingCaps.SupportsPositionalLights)
            {
                if (device.LightsFixed[2].Type == LightType.Point)
                    device.LightsFixed[2].Type = LightType.Directional;
            }

            // Handle positioning for the light that emanates
            // from the ship, representing the light from
            // the main engines.
            switch (device.Lights[2].Type)
            {
                case LightType.Point:
                    device.Lights[2].Position = new Vector3(0,
                        yVal, zVal);
                    device.Lights[2].Attenuation1 = 0.2f;
                    break;
                case LightType.Directional:
                    // Not implemented.
                    break;
            }
            device.Lights[2].Update();
        }

        static void Main()
        {
            try
            {
                MatrixTransformsHowTo d3dApp = new MatrixTransformsHowTo();
                System.Windows.Forms.Application.Run(d3dApp);
            }
            catch(NotSupportedException)
            {
                MessageBox.Show("Your device does not have the needed 3-D " + 
                    "support to run this sample");
            }
            catch(DriverUnsupportedException)
            {
                MessageBox.Show("Your device does not have the needed 3-D " + 
                    "support to run this sample");
            }
            catch(Exception e)
            {
                MessageBox.Show("The sample has run into an error and needs" +
                    "to close: " + e.Message);
            }
        }
    }
}

コードのコンパイル方法

この例では、次の名前空間への参照が必要です。

参照

処理手順

方法 : 高分解能タイマを使用する

概念

.NET Compact Framework に関する「方法」トピック

その他の技術情報

.NET Compact Framework での Mobile Direct3D プログラミング