TreeExtensions.FastTree 메서드

정의

오버로드

FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, FastTreeBinaryTrainer+Options)

의사 결정 트리 이진 분류 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastTreeBinaryTrainer 다.

FastTree(RankingCatalog+RankingTrainers, FastTreeRankingTrainer+Options)

FastTreeRankingTrainer 의사 결정 트리 순위 모델을 사용하여 관련성에 따라 일련의 입력 순위를 지정하는 고급 옵션을 만듭니다.

FastTree(RegressionCatalog+RegressionTrainers, FastTreeRegressionTrainer+Options)

의사 결정 트리 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastTreeRegressionTrainer 다.

FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32, Double)

만들기 FastTreeBinaryTrainer- 의사 결정 트리 이진 분류 모델을 사용하여 대상을 예측합니다.

FastTree(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)

만들기 FastTreeRegressionTrainer- 의사 결정 트리 회귀 모델을 사용하여 대상을 예측합니다.

FastTree(RankingCatalog+RankingTrainers, String, String, String, String, Int32, Int32, Int32, Double)

Create a FastTreeRankingTrainer, which ranks a series of inputs based on their relevancee, using a decision tree ranking model.

FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, FastTreeBinaryTrainer+Options)

의사 결정 트리 이진 분류 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastTreeBinaryTrainer 다.

public static Microsoft.ML.Trainers.FastTree.FastTreeBinaryTrainer FastTree (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.FastTree.FastTreeBinaryTrainer.Options options);
static member FastTree : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.FastTree.FastTreeBinaryTrainer.Options -> Microsoft.ML.Trainers.FastTree.FastTreeBinaryTrainer
<Extension()>
Public Function FastTree (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As FastTreeBinaryTrainer.Options) As FastTreeBinaryTrainer

매개 변수

options
FastTreeBinaryTrainer.Options

트레이너 옵션.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class FastTreeWithOptions
    {
        // This example requires installation of additional NuGet package for 
        // Microsoft.ML.FastTree at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new FastTreeBinaryTrainer.Options
            {
                // Use L2Norm for early stopping.
                EarlyStoppingMetric = EarlyStoppingMetric.L2Norm,
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 50.
                NumberOfTrees = 50
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .FastTree(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.78
            //   AUC: 0.88
            //   F1 Score: 0.79
            //   Negative Precision: 0.83
            //   Negative Recall: 0.74
            //   Positive Precision: 0.74
            //   Positive Recall: 0.84
            //   Log Loss: 0.62
            //   Log Loss Reduction: 37.77
            //   Entropy: 1.00
            //
            //  TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //  Confusion table
            //            ||======================
            //  PREDICTED || positive | negative | Recall
            //  TRUTH     ||======================
            //   positive ||      185 |       53 | 0.7773
            //   negative ||       83 |      179 | 0.6832
            //            ||======================
            //  Precision ||   0.6903 |   0.7716 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.03f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}


적용 대상

FastTree(RankingCatalog+RankingTrainers, FastTreeRankingTrainer+Options)

FastTreeRankingTrainer 의사 결정 트리 순위 모델을 사용하여 관련성에 따라 일련의 입력 순위를 지정하는 고급 옵션을 만듭니다.

public static Microsoft.ML.Trainers.FastTree.FastTreeRankingTrainer FastTree (this Microsoft.ML.RankingCatalog.RankingTrainers catalog, Microsoft.ML.Trainers.FastTree.FastTreeRankingTrainer.Options options);
static member FastTree : Microsoft.ML.RankingCatalog.RankingTrainers * Microsoft.ML.Trainers.FastTree.FastTreeRankingTrainer.Options -> Microsoft.ML.Trainers.FastTree.FastTreeRankingTrainer
<Extension()>
Public Function FastTree (catalog As RankingCatalog.RankingTrainers, options As FastTreeRankingTrainer.Options) As FastTreeRankingTrainer

매개 변수

options
FastTreeRankingTrainer.Options

트레이너 옵션.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;

namespace Samples.Dynamic.Trainers.Ranking
{
    public static class FastTreeWithOptions
    {
        // This example requires installation of additional NuGet package for 
        // Microsoft.ML.FastTree at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new FastTreeRankingTrainer.Options
            {
                // Use NdcgAt3 for early stopping.
                EarlyStoppingMetric = EarlyStoppingRankingMetric.NdcgAt3,
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 50.
                NumberOfTrees = 50,
                // Specify the row group column name.
                RowGroupColumnName = "GroupId"
            };

            // Define the trainer.
            var pipeline = mlContext.Ranking.Trainers.FastTree(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Take the top 5 rows.
            var topTransformedTestData = mlContext.Data.TakeRows(
                transformedTestData, 5);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                topTransformedTestData, reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label}, Score: {p.Score}");

            // Expected output:
            //   Label: 5, Score: 8.807633
            //   Label: 1, Score: -10.71331
            //   Label: 3, Score: -8.134147
            //   Label: 3, Score: -6.545538
            //   Label: 1, Score: -10.27982

            // Evaluate the overall metrics.
            var metrics = mlContext.Ranking.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   DCG: @1:40.57, @2:61.21, @3:74.11
            //   NDCG: @1:0.96, @2:0.95, @3:0.97
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0, int groupSize = 10)
        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = random.Next(0, 5);
                yield return new DataPoint
                {
                    Label = (uint)label,
                    GroupId = (uint)(i / groupSize),
                    // Create random features that are correlated with the label.
                    // For data points with larger labels, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => randomFloat() + x * 0.1f).ToArray()
                };
            }
        }

        // Example with label, groupId, and 50 feature values. A data set is a
        // collection of such examples.
        private class DataPoint
        {
            [KeyType(5)]
            public uint Label { get; set; }
            [KeyType(100)]
            public uint GroupId { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public uint Label { get; set; }
            // Score produced from the trainer.
            public float Score { get; set; }
        }

        // Pretty-print RankerMetrics objects.
        public static void PrintMetrics(RankingMetrics metrics)
        {
            Console.WriteLine("DCG: " + string.Join(", ",
                metrics.DiscountedCumulativeGains.Select(
                    (d, i) => (i + 1) + ":" + d + ":F2").ToArray()));
            Console.WriteLine("NDCG: " + string.Join(", ",
                metrics.NormalizedDiscountedCumulativeGains.Select(
                    (d, i) => (i + 1) + ":" + d + ":F2").ToArray()));
        }
    }
}

적용 대상

FastTree(RegressionCatalog+RegressionTrainers, FastTreeRegressionTrainer+Options)

의사 결정 트리 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastTreeRegressionTrainer 다.

public static Microsoft.ML.Trainers.FastTree.FastTreeRegressionTrainer FastTree (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, Microsoft.ML.Trainers.FastTree.FastTreeRegressionTrainer.Options options);
static member FastTree : Microsoft.ML.RegressionCatalog.RegressionTrainers * Microsoft.ML.Trainers.FastTree.FastTreeRegressionTrainer.Options -> Microsoft.ML.Trainers.FastTree.FastTreeRegressionTrainer
<Extension()>
Public Function FastTree (catalog As RegressionCatalog.RegressionTrainers, options As FastTreeRegressionTrainer.Options) As FastTreeRegressionTrainer

매개 변수

options
FastTreeRegressionTrainer.Options

트레이너 옵션.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class FastTreeWithOptionsRegression
    {
        // This example requires installation of additional NuGet
        // package for Microsoft.ML.FastTree found at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new FastTreeRegressionTrainer.Options
            {
                LabelColumnName = nameof(DataPoint.Label),
                FeatureColumnName = nameof(DataPoint.Features),
                // Use L2-norm for early stopping. If the gradient's L2-norm is
                // smaller than an auto-computed value, training process will stop.
                EarlyStoppingMetric =
                    Microsoft.ML.Trainers.FastTree.EarlyStoppingMetric.L2Norm,

                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 50.
                NumberOfTrees = 50
            };

            // Define the trainer.
            var pipeline =
                mlContext.Regression.Trainers.FastTree(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 0.950
            //   Label: 0.155, Prediction: 0.111
            //   Label: 0.515, Prediction: 0.475
            //   Label: 0.566, Prediction: 0.575
            //   Label: 0.096, Prediction: 0.093

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.03
            //   Mean Squared Error: 0.00
            //   Root Mean Squared Error: 0.03
            //   RSquared: 0.99 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

적용 대상

FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32, Double)

만들기 FastTreeBinaryTrainer- 의사 결정 트리 이진 분류 모델을 사용하여 대상을 예측합니다.

public static Microsoft.ML.Trainers.FastTree.FastTreeBinaryTrainer FastTree (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfLeaves = 20, int numberOfTrees = 100, int minimumExampleCountPerLeaf = 10, double learningRate = 0.2);
static member FastTree : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * int * int * int * double -> Microsoft.ML.Trainers.FastTree.FastTreeBinaryTrainer
<Extension()>
Public Function FastTree (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfLeaves As Integer = 20, Optional numberOfTrees As Integer = 100, Optional minimumExampleCountPerLeaf As Integer = 10, Optional learningRate As Double = 0.2) As FastTreeBinaryTrainer

매개 변수

labelColumnName
String

레이블 열의 이름입니다. 열 데이터는 .이어야 Boolean합니다.

featureColumnName
String

기능 열의 이름입니다. 열 데이터는 알려진 크기의 벡터 Single여야 합니다.

exampleWeightColumnName
String

예제 가중치 열의 이름(선택 사항)입니다.

numberOfLeaves
Int32

의사 결정 트리당 최대 리프 수입니다.

numberOfTrees
Int32

앙상블에서 만들 의사 결정 트리의 총 수입니다.

minimumExampleCountPerLeaf
Int32

새 트리 리프를 구성하는 데 필요한 최소 데이터 요소 수입니다.

learningRate
Double

학습 속도입니다.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class FastTree
    {
        // This example requires installation of additional NuGet package for 
        // Microsoft.ML.FastTree at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .FastTree();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.81
            //   AUC: 0.91
            //   F1 Score: 0.80
            //   Negative Precision: 0.82
            //   Negative Recall: 0.80
            //   Positive Precision: 0.79
            //   Positive Recall: 0.81
            //   Log Loss: 0.59
            //   Log Loss Reduction: 41.04
            //   Entropy: 1.00
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      185 |       53 | 0.7773
            //    negative ||       83 |      179 | 0.6832
            //             ||======================
            //   Precision ||   0.6903 |   0.7716 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.03f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}


적용 대상

FastTree(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)

만들기 FastTreeRegressionTrainer- 의사 결정 트리 회귀 모델을 사용하여 대상을 예측합니다.

public static Microsoft.ML.Trainers.FastTree.FastTreeRegressionTrainer FastTree (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfLeaves = 20, int numberOfTrees = 100, int minimumExampleCountPerLeaf = 10, double learningRate = 0.2);
static member FastTree : Microsoft.ML.RegressionCatalog.RegressionTrainers * string * string * string * int * int * int * double -> Microsoft.ML.Trainers.FastTree.FastTreeRegressionTrainer
<Extension()>
Public Function FastTree (catalog As RegressionCatalog.RegressionTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfLeaves As Integer = 20, Optional numberOfTrees As Integer = 100, Optional minimumExampleCountPerLeaf As Integer = 10, Optional learningRate As Double = 0.2) As FastTreeRegressionTrainer

매개 변수

labelColumnName
String

레이블 열의 이름입니다. 열 데이터는 .이어야 Single합니다.

featureColumnName
String

기능 열의 이름입니다. 열 데이터는 알려진 크기의 벡터 Single여야 합니다.

exampleWeightColumnName
String

예제 가중치 열의 이름(선택 사항)입니다.

numberOfLeaves
Int32

의사 결정 트리당 최대 리프 수입니다.

numberOfTrees
Int32

앙상블에서 만들 의사 결정 트리의 총 수입니다.

minimumExampleCountPerLeaf
Int32

새 트리 리프를 구성하는 데 필요한 최소 데이터 요소 수입니다.

learningRate
Double

학습 속도입니다.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class FastTreeRegression
    {
        // This example requires installation of additional NuGet
        // package for Microsoft.ML.FastTree found at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.Regression.Trainers.FastTree(
                labelColumnName: nameof(DataPoint.Label),
                featureColumnName: nameof(DataPoint.Features));

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 0.938
            //   Label: 0.155, Prediction: 0.131
            //   Label: 0.515, Prediction: 0.517
            //   Label: 0.566, Prediction: 0.519
            //   Label: 0.096, Prediction: 0.089

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.03
            //   Mean Squared Error: 0.00
            //   Root Mean Squared Error: 0.03
            //   RSquared: 0.99 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

적용 대상

FastTree(RankingCatalog+RankingTrainers, String, String, String, String, Int32, Int32, Int32, Double)

Create a FastTreeRankingTrainer, which ranks a series of inputs based on their relevancee, using a decision tree ranking model.

public static Microsoft.ML.Trainers.FastTree.FastTreeRankingTrainer FastTree (this Microsoft.ML.RankingCatalog.RankingTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string rowGroupColumnName = "GroupId", string exampleWeightColumnName = default, int numberOfLeaves = 20, int numberOfTrees = 100, int minimumExampleCountPerLeaf = 10, double learningRate = 0.2);
static member FastTree : Microsoft.ML.RankingCatalog.RankingTrainers * string * string * string * string * int * int * int * double -> Microsoft.ML.Trainers.FastTree.FastTreeRankingTrainer
<Extension()>
Public Function FastTree (catalog As RankingCatalog.RankingTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional rowGroupColumnName As String = "GroupId", Optional exampleWeightColumnName As String = Nothing, Optional numberOfLeaves As Integer = 20, Optional numberOfTrees As Integer = 100, Optional minimumExampleCountPerLeaf As Integer = 10, Optional learningRate As Double = 0.2) As FastTreeRankingTrainer

매개 변수

labelColumnName
String

레이블 열의 이름입니다. 열 데이터는 이어야 Single 합니다.KeyDataViewType

featureColumnName
String

기능 열의 이름입니다. 열 데이터는 알려진 크기의 벡터 Single여야 합니다.

rowGroupColumnName
String

그룹 열의 이름입니다.

exampleWeightColumnName
String

예제 가중치 열의 이름(선택 사항)입니다.

numberOfLeaves
Int32

의사 결정 트리당 최대 리프 수입니다.

numberOfTrees
Int32

앙상블에서 만들 의사 결정 트리의 총 수입니다.

minimumExampleCountPerLeaf
Int32

새 트리 리프를 구성하는 데 필요한 최소 데이터 요소 수입니다.

learningRate
Double

학습 속도입니다.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.Ranking
{
    public static class FastTree
    {
        // This example requires installation of additional NuGet package for 
        // Microsoft.ML.FastTree at
        // https://www.nuget.org/packages/Microsoft.ML.FastTree/
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.Ranking.Trainers.FastTree();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Take the top 5 rows.
            var topTransformedTestData = mlContext.Data.TakeRows(
                transformedTestData, 5);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                topTransformedTestData, reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label}, Score: {p.Score}");

            // Expected output:
            //   Label: 5, Score: 13.0154
            //   Label: 1, Score: -19.27798
            //   Label: 3, Score: -12.43686
            //   Label: 3, Score: -8.178633
            //   Label: 1, Score: -17.09313

            // Evaluate the overall metrics.
            var metrics = mlContext.Ranking.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   DCG: @1:41.95, @2:63.33, @3:75.65
            //   NDCG: @1:0.99, @2:0.98, @3:0.99
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0, int groupSize = 10)
        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = random.Next(0, 5);
                yield return new DataPoint
                {
                    Label = (uint)label,
                    GroupId = (uint)(i / groupSize),
                    // Create random features that are correlated with the label.
                    // For data points with larger labels, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50).Select(
                           x => randomFloat() + x * 0.1f).ToArray()
                };
            }
        }

        // Example with label, groupId, and 50 feature values. A data set is a
        // collection of such examples.
        private class DataPoint
        {
            [KeyType(5)]
            public uint Label { get; set; }
            [KeyType(100)]
            public uint GroupId { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public uint Label { get; set; }
            // Score produced from the trainer.
            public float Score { get; set; }
        }

        // Pretty-print RankerMetrics objects.
        public static void PrintMetrics(RankingMetrics metrics)
        {
            Console.WriteLine("DCG: " + string.Join(", ",
                metrics.DiscountedCumulativeGains.Select(
                (d, i) => (i + 1) + ":" + d + ":F2").ToArray()));

            Console.WriteLine("NDCG: " + string.Join(", ",
                metrics.NormalizedDiscountedCumulativeGains.Select(
                (d, i) => (i + 1) + ":" + d + ":F2").ToArray()));
        }
    }
}

적용 대상