LbfgsPoissonRegressionTrainer Класс
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
Для IEstimator<TTransformer> обучения модели регрессии Пуассона.
public sealed class LbfgsPoissonRegressionTrainer : Microsoft.ML.Trainers.LbfgsTrainerBase<Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.PoissonRegressionModelParameters>,Microsoft.ML.Trainers.PoissonRegressionModelParameters>
type LbfgsPoissonRegressionTrainer = class
inherit LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
Public NotInheritable Class LbfgsPoissonRegressionTrainer
Inherits LbfgsTrainerBase(Of LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer(Of PoissonRegressionModelParameters), PoissonRegressionModelParameters)
- Наследование
Комментарии
Чтобы создать этот обучающее средство, используйте LbfgsPoissonRegression или LbfgsPoissonRegression(Options).
Входные и выходные столбцы
Входные данные столбца меток должны иметь тип Single. Входные признаки данных столбцов должны быть вектором известного Singleразмера .
Этот алгоритм обучения выводит следующие столбцы:
Имя выходного столбца | Тип столбца | Описание |
---|---|---|
Score |
Single | Несвязанная оценка, прогнозируемая моделью. |
Характеристики тренера
Задача машинного обучения | Регрессия |
Требуется ли нормализация? | Да |
Требуется ли кэширование? | Нет |
Требуется NuGet в дополнение к Microsoft.ML | Нет |
Экспортируемый в ONNX | Да |
Сведения об алгоритме обучения
Регрессия Пуассона — это параметризованный метод регрессии. Предполагается, что журнал условного среднего значения зависимой переменной следует линейной функции зависимых переменных. Предполагая, что зависимые переменные следуют распределению Пуассона, параметры регрессии можно оценить, максимизируя вероятность полученных наблюдений.
Ссылки на примеры использования см. в разделе "См. также".
Поля
FeatureColumn |
Столбец признаков, который ожидает тренер. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Столбец метки, который ожидает тренер. Может иметь значение |
WeightColumn |
Столбец веса, который ожидает тренер. Может быть |
Свойства
Info |
Для IEstimator<TTransformer> обучения модели регрессии Пуассона. (Унаследовано от LbfgsTrainerBase<TOptions,TTransformer,TModel>) |
Методы
Fit(IDataView, LinearModelParameters) |
Продолжает обучение LbfgsPoissonRegressionTrainer использования уже обученного |
Fit(IDataView) |
Тренирует и возвращает .ITransformer (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Для IEstimator<TTransformer> обучения модели регрессии Пуассона. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
Методы расширения
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Добавьте "контрольную точку кэширования" в цепочку оценщика. Это гарантирует, что подчиненные оценщики будут обучены на основе кэшированных данных. Рекомендуется использовать контрольную точку кэширования перед обучением, которые принимают несколько данных. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Учитывая оценщик, верните объект-оболочку, который будет вызывать делегат один раз Fit(IDataView) . Часто важно, чтобы оценщик возвращал сведения о том, что было положено, поэтому Fit(IDataView) метод возвращает специально типизированный объект, а не просто общий ITransformer. Однако в то же время часто IEstimator<TTransformer> формируются в конвейеры со многими объектами, поэтому нам может потребоваться создать цепочку оценщиков, где EstimatorChain<TLastTransformer> оценщик, для которого мы хотим получить преобразователь, похоронен где-то в этой цепочке. В этом сценарии мы можем подключить делегат, который будет вызываться после вызова соответствия. |