Hızlı Başlangıç: Özel yaklaşım analizi (önizleme)
[NOT] Özel yaklaşım analizi (önizleme) 10 Ocak 2025'te kullanımdan kaldırılacaktır. Lütfen bu tarihe kadar Azure AI Dilinde özel metin sınıflandırması gibi diğer özel model eğitim hizmetlerine geçin. Şu andan 10 Ocak 2025'e kadar, mevcut projelerinizde kesinti yaşamadan özel yaklaşım analizini (önizleme) kullanmaya devam edebilirsiniz. Yeni projeler oluşturamazsınız. 10 Ocak 2025 tarihinde – özel yaklaşım analizi (önizleme) üzerinde çalışan iş yükleri silinecek ve ilişkili proje verileri kaybolacak.
Metnin yaklaşımını algılamak için özel modeller eğitebileceğiniz bir Özel yaklaşım analizi projesi oluşturmaya başlamak için bu makaleyi kullanın. Model, belirli bir görevi yerine getirmek için eğitilmiş yapay zeka yazılımıdır. Bu sistem için modeller metni sınıflandırır ve etiketli verilerden öğrenilerek eğitilir.
Önkoşullar
- Azure aboneliği - Ücretsiz bir abonelik oluşturun.
Yeni bir Azure Dil kaynağı ve Azure depolama hesabı oluşturma
Özel yaklaşım analizini kullanabilmeniz için önce bir Azure Dil kaynağı oluşturmanız gerekir. Bu kaynak size proje oluşturmak ve modeli eğitmeye başlamak için ihtiyacınız olan kimlik bilgilerini verir. Ayrıca modelinizi oluşturmak için kullanılacak veri kümenizi karşıya yükleyebileceğiniz bir Azure depolama hesabına da ihtiyacınız olacaktır.
Önemli
Hızlı bir şekilde başlamak için bu makalede sağlanan adımları kullanarak yeni bir Azure Dil kaynağı oluşturmanızı öneririz. Bu makaledeki adımların kullanılması, Dil kaynağı ve depolama hesabını aynı anda oluşturmanıza olanak sağlar. Bu, daha sonra yapmaktan daha kolaydır.
Azure portalından yeni kaynak oluşturma
Yeni bir Azure Yapay Zeka Dili kaynağı oluşturmak için Azure portalına gidin.
Açılan pencerede özel özelliklerden bu hizmeti seçin. Ekranın alt kısmındaki kaynağınızı oluşturmak için Devam'ı seçin.
Aşağıdaki ayrıntıları içeren bir Dil kaynağı oluşturun.
Veri Akışı Adı Açıklama Abonelik Azure aboneliğiniz. Kaynak grubu Kaynağınızı içerecek bir kaynak grubu. Mevcut bir tane kullanabilir veya yeni bir tane oluşturabilirsiniz. Bölge Dil kaynağınızın bölgesi. Örneğin, "Batı ABD 2". Veri Akışı Adı Kaynağınız için bir ad. Fiyatlandırma katmanı Dil kaynağınızın fiyatlandırma katmanı. Hizmeti denemek için Ücretsiz (F0) katmanını kullanabilirsiniz. Not
"Oturum açma hesabınız seçili depolama hesabının kaynak grubunun sahibi değil" iletisini alırsanız, Dil kaynağı oluşturabilmeniz için önce hesabınızın kaynak grubunda sahip rolü atanmış olması gerekir. Yardım için Azure aboneliğinizin sahibine başvurun.
Bu hizmetin bölümünde mevcut bir depolama hesabını seçin veya Yeni depolama hesabı'yı seçin. Bu değerler, üretim ortamlarında kullanmak isteyeceğiniz depolama hesabı değerlerini değil, kullanmaya başlamanıza yardımcı olmak için kullanılır. Projenizi oluştururken gecikme süresini önlemek için Dil kaynağınızla aynı bölgedeki depolama hesaplarına bağlanın.
Depolama hesabı değeri Önerilen değer Depolama hesabı adı Herhangi bir ad Storage account type Standart LRS Sorumlu Yapay Zeka Bildirimi'nin işaretli olduğundan emin olun. Sayfanın alt kısmındaki Gözden geçir + oluştur'u ve ardından Oluştur'u seçin.
Örnek verileri blob kapsayıcısına yükleme
Bir Azure depolama hesabı oluşturup Bunu Dil kaynağınıza bağladıktan sonra, örnek veri kümesindeki belgeleri kapsayıcınızın kök dizinine yüklemeniz gerekir. Bu belgeler daha sonra modelinizi eğitmek için kullanılacaktır.
Özel yaklaşım analizi projeleri için örnek veri kümesini indirerek başlayın. .zip dosyasını açın ve belgeleri içeren klasörü ayıklayın. Sağlanan örnek veri kümesi, her biri kısa bir müşteri incelemesi örneği olan belgeler içerir.
Depolama hesabınıza yüklenecek dosyaları bulma
Azure portalında, oluşturduğunuz depolama hesabına gidin ve bunu seçin.
Depolama hesabınızda, Veri depolama altında yer alan sol menüden Kapsayıcılar'ı seçin. Görüntülenen ekranda + Kapsayıcı'yı seçin. Kapsayıcıya example-data adını verin ve varsayılan Genel erişim düzeyini bırakın.
Kapsayıcınız oluşturulduktan sonra seçin. Daha önce indirdiğiniz ve dosyalarını seçmek için Karşıya Yükle düğmesini seçin
.txt
..json
Özel yaklaşım analizi projesi oluşturma
Kaynak ve depolama kapsayıcınız yapılandırıldıktan sonra yeni bir Özel yaklaşım analizi projesi oluşturun. Proje, verilerinize göre özel ML modellerinizi oluşturmaya yönelik bir çalışma alanıdır. Projenize yalnızca siz ve kullanılan Dil kaynağına erişimi olan diğer kişiler erişebilir.
Language Studio'da oturum açın. Aboneliğinizi ve Dil kaynağınızı seçmenizi sağlayacak bir pencere görüntülenir. Yukarıdaki adımda oluşturduğunuz Dil kaynağını seçin.
Language Studio'da kullanmak istediğiniz özelliği seçin.
Projeler sayfanızın üst menüsünden Yeni proje oluştur'u seçin. Proje oluşturmak, modellerinizi etiketlemenize, eğitip değerlendirmenize, geliştirmenize ve dağıtmanıza olanak tanır.
Projenizdeki dosyaların adı, açıklaması ve dili de dahil olmak üzere proje bilgilerini girin. Örnek veri kümesini kullanıyorsanız İngilizce'yi seçin. Projenizin adını daha sonra değiştiremezsiniz. İleri'yi seçin
İpucu
Veri kümenizin tamamen aynı dilde olması gerekmez. Her birinde desteklenen farklı dillere sahip birden çok belgeniz olabilir. Veri kümeniz farklı dillerde belgeler içeriyorsa veya çalışma zamanı sırasında farklı dillerden metin bekliyorsanız, projeniz için temel bilgileri girerken çok dilli veri kümesini etkinleştir seçeneğini belirleyin. Bu seçenek daha sonra Proje ayarları sayfasından etkinleştirilebilir.
Yeni proje oluştur'u seçtikten sonra depolama hesabınızı bağlamanıza olanak sağlayan bir pencere görüntülenir. Zaten bir depolama hesabı bağladıysanız, hesaplanmış depolamanın bağlı olduğunu görürsünüz. Aksi takdirde, görüntülenen açılan listeden depolama hesabınızı seçin ve Depolama hesabını bağla'yı seçin; bu işlem depolama hesabınız için gerekli rolleri ayarlar. Depolama hesabında sahip olarak atanmadıysanız bu adım büyük olasılıkla bir hata döndürür.
Not
- Bu adımı, kullandığınız her yeni kaynak için yalnızca bir kez yapmanız gerekir.
- Bu işlem geri alınamaz. Bir depolama hesabını Dil kaynağınıza bağlarsanız daha sonra bağlantısını kesemezsiniz.
- Dil kaynağınızı yalnızca bir depolama hesabına bağlayabilirsiniz.
Veri kümenizi yüklediğiniz kapsayıcıyı seçin.
Verileri zaten etiketlediyseniz desteklenen biçime uydığından emin olun ve Evet, dosyalarım zaten etiketlendi ve JSON etiketleri dosyasını biçimlendirdim'i seçin ve açılan menüden etiketler dosyasını seçin. İleri'yi seçin. Hızlı Başlangıç'tan veri kümesini kullanıyorsanız JSON etiketleri dosyasının biçimlendirmesini gözden geçirmeniz gerekmez.
Girdiğiniz verileri gözden geçirin ve Proje Oluştur'u seçin.
Modelinizi eğitme
Genellikle bir proje oluşturduktan sonra, projenize bağlı kapsayıcıda bulunan belgeleri etiketlemeye başlarsınız. Bu hızlı başlangıçta, veri kümesi etiketli bir örneği içeri aktarmış ve projenizi örnek JSON etiketleri dosyasıyla başlatmışsınızdır.
Modelinizi Language Studio'dan eğitmeye başlamak için:
Sol taraftaki menüden Eğitim işleri'ni seçin.
Üstteki menüden Eğitim işi başlat'ı seçin.
Yeni model eğit'i seçin ve metin kutusuna model adını yazın. Ayrıca , bu seçeneği belirleyip açılan menüden üzerine yazmak istediğiniz modeli seçerek mevcut modelin üzerine yazabilirsiniz. Eğitilen modelin üzerine yazmak geri alınamaz, ancak yeni modeli dağıtana kadar dağıtılan modellerinizi etkilemez.
Varsayılan olarak, sistem etiketlenmiş verilerinizi belirtilen yüzdelere göre eğitim ve test kümeleri arasında böler. Test kümenizde belgeler varsa eğitim ve test verilerini el ile bölebilirsiniz.
Eğit düğmesini seçin.
Listeden Eğitim İşi Kimliği'ni seçerseniz, bu işin Eğitim ilerleme durumunu, İş durumunu ve diğer ayrıntıları denetleyebileceğiniz bir yan bölme görüntülenir.
Not
- Yalnızca başarıyla tamamlanan eğitim işleri model oluşturur.
- Eğitim, etiketlenmiş verilerinizin boyutuna bağlı olarak birkaç dakika ile birkaç saat arasında sürebilir.
- Aynı anda yalnızca bir eğitim işi çalıştırabilirsiniz. Çalışan iş tamamlanana kadar aynı proje içinde başka bir eğitim işi başlatamazsınız.
Modelinizi dağıtma
Genellikle bir modeli eğitdikten sonra değerlendirme ayrıntılarını gözden geçirir ve gerekirse iyileştirmeler yaparsınız. Bu hızlı başlangıçta modelinizi dağıtacak ve Language Studio'da denemeniz için kullanılabilir hale getirecek veya tahmin API'sini çağırabilirsiniz.
Modelinizi Language Studio'dan dağıtmak için:
Sol taraftaki menüden Model dağıtma'ya tıklayın.
Yeni bir dağıtım işi başlatmak için Dağıtım ekle'yi seçin.
Yeni bir dağıtım oluşturmak ve aşağıdaki açılan listeden eğitilmiş bir model atamak için Yeni dağıtım oluştur'u seçin. Ayrıca bu seçeneği belirleyerek ve aşağıdaki açılan listeden bu dağıtıma atamak istediğiniz eğitilmiş modeli seçerek mevcut dağıtımın üzerine yazabilirsiniz.
Not
Mevcut dağıtımın üzerine yazmak için tahmin API çağrınızda değişiklik yapılması gerekmez, ancak elde ettiğiniz sonuçlar yeni atanan modeli temel alır.
Dağıtım işini başlatmak için Dağıt'ı seçin.
Dağıtım başarılı olduktan sonra, yanında bir sona erme tarihi görüntülenir. Dağıtım süre sonu , dağıtılan modelinizin tahmin için kullanılamadığı zamandır ve bu durum genellikle eğitim yapılandırmasının süresi dolduktan on iki ay sonra gerçekleşir.
Modelinizi test etme
Modeliniz dağıtıldıktan sonra, Tahmin API'sini kullanarak metninizi sınıflandırmak için kullanmaya başlayabilirsiniz. Bu hızlı başlangıçta, Özel yaklaşım analizi görevini göndermek ve sonuçları görselleştirmek için Language Studio'yu kullanacaksınız. Daha önce indirdiğiniz örnek veri kümesinde bu adımda kullanabileceğiniz bazı test belgelerini bulabilirsiniz.
Dağıtılan modellerinizi Language Studio'dan test etmek için:
Sol taraftaki menüden Dağıtımları test etme'yi seçin.
Test etmek istediğiniz dağıtımı seçin. Yalnızca dağıtımlara atanan modelleri test edebilirsiniz.
Çok dilli projeler için dil açılan listesinden test ettiğiniz metnin dilini seçin.
Açılan listeden sorgulamak/test etmek istediğiniz dağıtımı seçin.
İsteğe göndermek istediğiniz metni girebilir veya kullanmak üzere bir
.txt
dosya yükleyebilirsiniz.Üstteki menüden Testi çalıştır'ı seçin.
Sonuç sekmesinde, metninizden ve bunların türlerinden ayıklanan varlıkları görebilirsiniz. JSON yanıtını JSON sekmesinin altında da görüntüleyebilirsiniz.
Projeleri temizleme
Projenize artık ihtiyacınız olmadığında, Language Studio'yu kullanarak projenizi silebilirsiniz. Üst kısımda kullanmakta olduğunuz özelliği seçin ve ardından silmek istediğiniz projeyi seçin. Projeyi silmek için üstteki menüden Sil'i seçin.
Önkoşullar
- Azure aboneliği - Ücretsiz bir abonelik oluşturun.
Yeni bir Azure Dil kaynağı ve Azure depolama hesabı oluşturma
Özel yaklaşım analizini kullanabilmeniz için önce bir Azure Dil kaynağı oluşturmanız gerekir. Bu kaynak size proje oluşturmak ve modeli eğitmeye başlamak için ihtiyacınız olan kimlik bilgilerini verir. Ayrıca modelinizi oluştururken kullanılacak veri kümenizi karşıya yükleyebileceğiniz bir Azure depolama hesabına da ihtiyacınız olacaktır.
Önemli
Hızlı bir şekilde başlamak için, bu makalede sağlanan adımları kullanarak yeni bir Azure Dil kaynağı oluşturmanızı öneririz. Bu, Dil kaynağını oluşturmanıza ve/veya depolama hesabını aynı anda oluşturmanıza ve/veya bağlamanıza olanak sağlar. Bu, daha sonra yapmaktan daha kolaydır.
Azure portalından yeni kaynak oluşturma
Yeni bir Azure Yapay Zeka Dili kaynağı oluşturmak için Azure portalına gidin.
Açılan pencerede özel özelliklerden bu hizmeti seçin. Ekranın alt kısmındaki kaynağınızı oluşturmak için Devam'ı seçin.
Aşağıdaki ayrıntıları içeren bir Dil kaynağı oluşturun.
Veri Akışı Adı Açıklama Abonelik Azure aboneliğiniz. Kaynak grubu Kaynağınızı içerecek bir kaynak grubu. Mevcut bir tane kullanabilir veya yeni bir tane oluşturabilirsiniz. Bölge Dil kaynağınızın bölgesi. Örneğin, "Batı ABD 2". Veri Akışı Adı Kaynağınız için bir ad. Fiyatlandırma katmanı Dil kaynağınızın fiyatlandırma katmanı. Hizmeti denemek için Ücretsiz (F0) katmanını kullanabilirsiniz. Not
"Oturum açma hesabınız seçili depolama hesabının kaynak grubunun sahibi değil" iletisini alırsanız, Dil kaynağı oluşturabilmeniz için önce hesabınızın kaynak grubunda sahip rolü atanmış olması gerekir. Yardım için Azure aboneliğinizin sahibine başvurun.
Bu hizmetin bölümünde mevcut bir depolama hesabını seçin veya Yeni depolama hesabı'yı seçin. Bu değerler, üretim ortamlarında kullanmak isteyeceğiniz depolama hesabı değerlerini değil, kullanmaya başlamanıza yardımcı olmak için kullanılır. Projenizi oluştururken gecikme süresini önlemek için Dil kaynağınızla aynı bölgedeki depolama hesaplarına bağlanın.
Depolama hesabı değeri Önerilen değer Depolama hesabı adı Herhangi bir ad Storage account type Standart LRS Sorumlu Yapay Zeka Bildirimi'nin işaretli olduğundan emin olun. Sayfanın alt kısmındaki Gözden geçir + oluştur'u ve ardından Oluştur'u seçin.
Örnek verileri blob kapsayıcısına yükleme
Bir Azure depolama hesabı oluşturup Bunu Dil kaynağınıza bağladıktan sonra, örnek veri kümesindeki belgeleri kapsayıcınızın kök dizinine yüklemeniz gerekir. Bu belgeler daha sonra modelinizi eğitmek için kullanılacaktır.
Özel yaklaşım analizi projeleri için örnek veri kümesini indirerek başlayın. .zip dosyasını açın ve belgeleri içeren klasörü ayıklayın. Sağlanan örnek veri kümesi, her biri kısa bir müşteri incelemesi örneği olan belgeler içerir.
Depolama hesabınıza yüklenecek dosyaları bulma
Azure portalında, oluşturduğunuz depolama hesabına gidin ve bunu seçin.
Depolama hesabınızda, Veri depolama altında yer alan sol menüden Kapsayıcılar'ı seçin. Görüntülenen ekranda + Kapsayıcı'yı seçin. Kapsayıcıya example-data adını verin ve varsayılan Genel erişim düzeyini bırakın.
Kapsayıcınız oluşturulduktan sonra seçin. Daha önce indirdiğiniz ve dosyalarını seçmek için Karşıya Yükle düğmesini seçin
.txt
..json
Anahtarınızı ve uç noktanızı alma
Ardından uygulamanızı API'ye bağlamak için kaynağın anahtarına ve uç noktasına ihtiyacınız olacak. Anahtarınızı ve uç noktanızı hızlı başlangıcın ilerleyen bölümlerinde koda yapıştıracaksınız.
Dil kaynağı başarıyla dağıtıldıktan sonra, Sonraki Adımlar'ın altındaki Kaynağa Git düğmesine tıklayın.
Kaynağınızın ekranında, sol gezinti menüsünde Anahtarlar ve uç nokta'yı seçin. Aşağıdaki adımlarda anahtarlarınızdan birini ve uç noktanızı kullanacaksınız.
Özel yaklaşım analizi projesi oluşturma
Kaynak ve depolama kapsayıcınız yapılandırıldıktan sonra yeni bir Özel yaklaşım analizi projesi oluşturun. Proje, verilerinize göre özel ML modellerinizi oluşturmaya yönelik bir çalışma alanıdır. Projenize yalnızca siz ve kullanılan Dil kaynağına erişimi olan diğer kişiler erişebilir.
proje işini içeri aktarmayı tetikleme
Etiket dosyanızı içeri aktarmak için aşağıdaki URL'yi, üst bilgileri ve JSON gövdesini kullanarak bir POST isteği gönderin.
Aynı ada sahip bir proje zaten varsa, o projenin verileri değiştirilir.
{Endpoint}/language/authoring/analyze-text/projects/{projectName}/:import?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinin | 2023-04-15-preview |
Üst Bilgiler
İsteğinizin kimliğini doğrulamak için aşağıdaki üst bilgiyi kullanın.
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key |
Kaynağınızın anahtarı. API isteklerinizin kimliğini doğrulamak için kullanılır. |
Gövde
İsteğinizde aşağıdaki JSON'yi kullanın. Aşağıdaki yer tutucu değerlerini kendi değerlerinizle değiştirin.
{
"projectFileVersion": "2023-04-15-preview",
"stringIndexType": "Utf16CodeUnit",
"metadata": {
"projectKind": "CustomTextSentiment",
"storageInputContainerName": "text-sentiment",
"projectName": "TestSentiment",
"multilingual": false,
"description": "This is a Custom sentiment analysis project.",
"language": "en-us"
},
"assets": {
"projectKind": "CustomTextSentiment",
"documents": [
{
"location": "documents/document_1.txt",
"language": "en-us",
"sentimentSpans": [
{
"category": "negative",
"offset": 0,
"length": 28
}
]
},
{
"location": "documents/document_2.txt",
"language": "en-us",
"sentimentSpans": [
{
"category": "negative",
"offset": 0,
"length": 24
}
]
},
{
"location": "documents/document_3.txt",
"language": "en-us",
"sentimentSpans": [
{
"category": "neutral",
"offset": 0,
"length": 18
}
]
}
]
}
}
Anahtar | Yer tutucu | Değer | Örnek |
---|---|---|---|
api-sürümü | {API-VERSION} |
Çağırdığınız API'nin sürümü. Burada kullanılan sürüm, URL'de aynı API sürümü olmalıdır. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinin | 2023-04-15-preview |
projectName | {PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
projectKind | CustomTextSentiment |
Proje türünüz. | CustomTextSentiment |
dil | {LANGUAGE-CODE} |
Projenizde kullanılan belgelerin dil kodunu belirten bir dize. Projeniz çok dilli bir projeyse, belgelerin çoğunun dil kodunu seçin. Çok dilli destek hakkında daha fazla bilgi edinmek için bkz. dil desteği. | en-us |
çokdilli | true |
Veri kümenizde birden çok dilde belge olmasını sağlayan boole değeridir ve modeliniz dağıtıldığında modeli eğitim belgelerinize dahil olması gerekmeyen desteklenen herhangi bir dilde sorgulayabilirsiniz. Çok dilli destek hakkında daha fazla bilgi edinmek için bkz. dil desteği. | true |
storageInputContainerName | {CONTAINER-NAME} |
Belgelerinizi yüklediğiniz Azure depolama kapsayıcınızın adı. | myContainer |
documents | [] | Projenizdeki tüm belgeleri ve bu belge için etiketlenen sınıfları içeren dizi. | [] |
konum | {DOCUMENT-NAME} |
Depolama kapsayıcısında belgelerin konumu. Tüm belgeler kapsayıcının kökünde olduğundan, belge adı bu olmalıdır. | doc1.txt |
sentimentSpans | {sentimentSpans} |
Belgenin yaklaşımı (pozitif, nötr, negatif), yaklaşımın başladığı konum ve uzunluğu. | [] |
API isteğinizi gönderdikten sonra, işin doğru şekilde gönderildiğini belirten bir 202
yanıt alırsınız. Yanıt üst bilgilerinde değeri ayıklayın operation-location
. Şu şekilde biçimlendirilir:
{ENDPOINT}/language/authoring/analyze-text/projects/{PROJECT-NAME}/import/jobs/{JOB-ID}?api-version={API-VERSION}
{JOB-ID}
bu işlem zaman uyumsuz olduğundan isteğinizi tanımlamak için kullanılır. İçeri aktarma işi durumunu almak için bu URL'yi kullanacaksınız.
Bu istek için olası hata senaryoları:
- Belirtilen
storageInputContainerName
yok. - Geçersiz dil kodu kullanılır veya dil kodu türü dize değilse.
multilingual
değeri boole değil bir dizedir.
İçeri aktarma işi durumunu alma
Projenizi içeri aktarmanızın durumunu almak için aşağıdaki GET isteğini kullanın. Aşağıdaki yer tutucu değerlerini kendi değerlerinizle değiştirin.
İstek URL’si
{ENDPOINT}/language/authoring/analyze-text/projects/{PROJECT-NAME}/import/jobs/{JOB-ID}?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
{JOB-ID} |
Modelinizin eğitim durumunu bulma kimliği. Bu değer, önceki adımda aldığınız üst bilgi değerindedir location . |
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinin | 2023-04-15-preview |
Üst Bilgiler
İsteğinizin kimliğini doğrulamak için aşağıdaki üst bilgiyi kullanın.
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key |
Kaynağınızın anahtarı. API isteklerinizin kimliğini doğrulamak için kullanılır. |
Modelinizi eğitme
Genellikle bir proje oluşturduktan sonra, projenize bağlı kapsayıcıda bulunan belgeleri etiketlemeye başlarsınız. Bu hızlı başlangıçta, örnek etiketli bir veri kümesini içeri aktarmış ve örnek JSON etiketleri dosyasıyla projenizi başlatmışsınızdır.
Modelinizi eğitmeye başlama
Projeniz içeri aktarıldıktan sonra modelinizi eğitmeye başlayabilirsiniz.
Bir eğitim işi göndermek için aşağıdaki URL'yi, üst bilgileri ve JSON gövdesini kullanarak bir POST isteği gönderin. Yer tutucu değerlerini kendi değerlerinizle değiştirin.
{ENDPOINT}/language/authoring/analyze-text/projects/{PROJECT-NAME}/:train?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinin | 2023-04-15-preview |
Üst Bilgiler
İsteğinizin kimliğini doğrulamak için aşağıdaki üst bilgiyi kullanın.
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key |
Kaynağınızın anahtarı. API isteklerinizin kimliğini doğrulamak için kullanılır. |
Request body
İstek gövdesinde aşağıdaki JSON'yi kullanın. Eğitim tamamlandıktan sonra modele {MODEL-NAME}
verilir. Yalnızca başarılı eğitim işleri model üretir.
{
"modelLabel": "{MODEL-NAME}",
"trainingConfigVersion": "{CONFIG-VERSION}",
"evaluationOptions": {
"kind": "percentage",
"trainingSplitPercentage": 80,
"testingSplitPercentage": 20
}
}
Anahtar | Yer tutucu | Değer | Örnek |
---|---|---|---|
modelLabel | {MODEL-NAME} |
Başarıyla eğitildikten sonra modelinize atanacak model adı. | myModel |
trainingConfigVersion | {CONFIG-VERSION} |
Bu, modeli eğitmek için kullanılacak model sürümüdür . | 2023-04-15-preview |
evaluationOptions | Verilerinizi eğitim ve test kümelerine bölme seçeneği. | {} |
|
tür | percentage |
Bölünmüş yöntemler. Olası değerler: percentage veya manual . |
percentage |
trainingSplitPercentage | 80 |
Eğitim kümesine eklenecek etiketli verilerinizin yüzdesi. Önerilen değer: 80 . |
80 |
testingSplitPercentage | 20 |
Test kümesine eklenecek etiketli verilerinizin yüzdesi. Önerilen değer: 20 . |
20 |
Not
trainingSplitPercentage
ve testingSplitPercentage
yalnızca olarak ayarlandıysa Kind
percentage
gereklidir ve her iki yüzdenin toplamı 100'e eşit olmalıdır.
API isteğinizi gönderdikten sonra, işin doğru şekilde gönderildiğini belirten bir 202
yanıt alırsınız. Yanıt üst bilgilerinde değeri ayıklayın location
. Şu şekilde biçimlendirilir:
{ENDPOINT}/language/authoring/analyze-text/projects/{PROJECT-NAME}/train/jobs/{JOB-ID}?api-version={API-VERSION}
Bu işlem zaman uyumsuz olduğundan isteğinizi tanımlamak için {JOB-ID} kullanılıyor. Eğitim durumunu almak için bu URL'yi kullanabilirsiniz.
Eğitim işi durumunu alma
Eğitim 10 ile 30 dakika arasında sürebilir. Başarıyla tamamlanana kadar eğitim işinin durumunu yoklamayı sürdürmek için aşağıdaki isteği kullanabilirsiniz.
Modelinizin eğitim ilerleme durumunu almak için aşağıdaki GET isteğini kullanın. Yer tutucu değerlerini kendi değerlerinizle değiştirin.
İstek URL’si
{ENDPOINT}/language/authoring/analyze-text/projects/{PROJECT-NAME}/train/jobs/{JOB-ID}?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
{JOB-ID} |
Modelinizin eğitim durumunu bulma kimliği. Bu değer, önceki adımda aldığınız üst bilgi değerindedir location . |
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinmek için bkz . model yaşam döngüsü . | 2023-04-15-preview |
Üst Bilgiler
İsteğinizin kimliğini doğrulamak için aşağıdaki üst bilgiyi kullanın.
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key |
Kaynağınızın anahtarı. API isteklerinizin kimliğini doğrulamak için kullanılır. |
Yanıt gövdesi
İsteği gönderdikten sonra aşağıdaki yanıtı alırsınız.
{
"result": {
"modelLabel": "{MODEL-NAME}",
"trainingConfigVersion": "{CONFIG-VERSION}",
"estimatedEndDateTime": "2022-04-18T15:47:58.8190649Z",
"trainingStatus": {
"percentComplete": 3,
"startDateTime": "2022-04-18T15:45:06.8190649Z",
"status": "running"
},
"evaluationStatus": {
"percentComplete": 0,
"status": "notStarted"
}
},
"jobId": "{JOB-ID}",
"createdDateTime": "2022-04-18T15:44:44Z",
"lastUpdatedDateTime": "2022-04-18T15:45:48Z",
"expirationDateTime": "2022-04-25T15:44:44Z",
"status": "running"
}
Modelinizi dağıtma
Genellikle bir modeli eğitdikten sonra değerlendirme ayrıntılarını gözden geçirir ve gerekirse iyileştirmeler yaparsınız. Bu hızlı başlangıçta modelinizi dağıtacak ve Language Studio'da denemeniz için kullanılabilir hale getirecek veya tahmin API'sini çağırabilirsiniz.
Dağıtım işini gönderme
Bir dağıtım işi göndermek için aşağıdaki URL' yi, üst bilgileri ve JSON gövdesini kullanarak bir PUT isteği gönderin. Yer tutucu değerlerini kendi değerlerinizle değiştirin.
{Endpoint}/language/authoring/analyze-text/projects/{projectName}/deployments/{deploymentName}?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
{DEPLOYMENT-NAME} |
Dağıtımınızın adı. Bu değer büyük/küçük harfe duyarlıdır. | staging |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinmek için bkz . Model yaşam döngüsü . | 2023-04-15-preview |
Üst Bilgiler
İsteğinizin kimliğini doğrulamak için aşağıdaki üst bilgiyi kullanın.
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key |
Kaynağınızın anahtarı. API isteklerinizin kimliğini doğrulamak için kullanılır. |
Request body
İsteğinizin gövdesinde aşağıdaki JSON'yi kullanın. Dağıtıma atamak için modelin adını kullanın.
{
"trainedModelLabel": "{MODEL-NAME}"
}
Anahtar | Yer tutucu | Değer | Örnek |
---|---|---|---|
trainedModelLabel | {MODEL-NAME} |
Dağıtımınıza atanacak model adı. Yalnızca başarıyla eğitilmiş modeller atayabilirsiniz. Bu değer büyük/küçük harfe duyarlıdır. | myModel |
API isteğinizi gönderdikten sonra, işin doğru şekilde gönderildiğini belirten bir 202
yanıt alırsınız. Yanıt üst bilgilerinde değeri ayıklayın operation-location
. Şu şekilde biçimlendirilir:
{ENDPOINT}/language/authoring/analyze-text/projects/{PROJECT-NAME}/deployments/{DEPLOYMENT-NAME}/jobs/{JOB-ID}?api-version={API-VERSION}
{JOB-ID}
bu işlem zaman uyumsuz olduğundan isteğinizi tanımlamak için kullanılır. Dağıtım durumunu almak için bu URL'yi kullanabilirsiniz.
Dağıtım işi durumunu alma
Dağıtım işinin durumunu sorgulamak için aşağıdaki GET isteğini kullanın. Önceki adımda aldığınız URL'yi kullanabilir veya yer tutucu değerlerini kendi değerlerinizle değiştirebilirsiniz.
{ENDPOINT}/language/authoring/analyze-text/projects/{PROJECT-NAME}/deployments/{DEPLOYMENT-NAME}/jobs/{JOB-ID}?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
{DEPLOYMENT-NAME} |
Dağıtımınızın adı. Bu değer büyük/küçük harfe duyarlıdır. | staging |
{JOB-ID} |
Modelinizin eğitim durumunu bulma kimliği. Bu, önceki adımda aldığınız üst bilgi değerindedir location . |
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinmek için bkz . Model yaşam döngüsü . | 2023-04-15-preview |
Üst Bilgiler
İsteğinizin kimliğini doğrulamak için aşağıdaki üst bilgiyi kullanın.
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key |
Kaynağınızın anahtarı. API isteklerinizin kimliğini doğrulamak için kullanılır. |
Yanıt gövdesi
İsteği gönderdikten sonra aşağıdaki yanıtı alırsınız. Durum parametresi "başarılı" olarak değişene kadar bu uç noktayı yoklamayı sürdürebilirsiniz. İsteğin başarısını belirten bir 200
kod almalısınız.
{
"jobId":"{JOB-ID}",
"createdDateTime":"{CREATED-TIME}",
"lastUpdatedDateTime":"{UPDATED-TIME}",
"expirationDateTime":"{EXPIRATION-TIME}",
"status":"running"
}
Metni sınıflandırma
Modeliniz başarıyla dağıtıldıktan sonra, Tahmin API'sini kullanarak metninizi sınıflandırmak için kullanmaya başlayabilirsiniz. Daha önce indirdiğiniz örnek veri kümesinde bu adımda kullanabileceğiniz bazı test belgelerini bulabilirsiniz.
Özel yaklaşım analizi görevi gönderme
Metin sınıflandırma görevi başlatmak için bu POST isteğini kullanın.
{ENDPOINT}/language/analyze-text/jobs?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. | 2023-04-15-preview |
Üst Bilgiler
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key | Bu API'ye erişim sağlayan anahtarınız. |
Gövde
{
"displayName": "Detecting sentiment",
"analysisInput": {
"documents": [
{
"id": "1",
"language": "{LANGUAGE-CODE}",
"text": "Text1"
},
{
"id": "2",
"language": "{LANGUAGE-CODE}",
"text": "Text2"
}
]
},
"tasks": [
{
"kind": "CustomTextSentiment",
"taskName": "Sentiment analysis",
"parameters": {
"projectName": "{PROJECT-NAME}",
"deploymentName": "{DEPLOYMENT-NAME}"
}
}
]
}
Anahtar | Yer tutucu | Değer | Örnek |
---|---|---|---|
displayName |
{JOB-NAME} |
İş adınız. | MyJobName |
documents |
[{},{}] | Görevlerin çalıştırılacak belgelerin listesi. | [{},{}] |
id |
{DOC-ID} |
Belge adı veya kimliği. | doc1 |
language |
{LANGUAGE-CODE} |
Belgenin dil kodunu belirten bir dize. Bu anahtar belirtilmezse, hizmet proje oluşturma sırasında seçilen projenin varsayılan dilini kabul eder. | en-us |
text |
{DOC-TEXT} |
Görevlerin çalıştırılacak belge görevi. | Lorem ipsum dolor sit amet |
tasks |
Gerçekleştirmek istediğimiz görevlerin listesi. | [] |
|
taskName |
CustomTextSentiment |
Görev adı | CustomTextSentiment |
parameters |
Göreve geçirecek parametrelerin listesi. | ||
project-name |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
deployment-name |
{DEPLOYMENT-NAME} |
Dağıtımınızın adı. Bu değer büyük/küçük harfe duyarlıdır. | prod |
Response
Görevinizin başarıyla gönderildiğini belirten bir 202 yanıtı alırsınız. Yanıt üst bilgilerinde ayıklayın operation-location
.
operation-location
şu şekilde biçimlendirilir:
{ENDPOINT}/language/analyze-text/jobs/{JOB-ID}?api-version={API-VERSION}
Görev tamamlanma durumunu sorgulamak ve görev tamamlandığında sonuçları almak için bu URL'yi kullanabilirsiniz.
Görev sonuçlarını alma
Özel varlık tanıma görevinin durumunu/sonuçlarını sorgulamak için aşağıdaki GET isteğini kullanın.
{ENDPOINT}/language/analyze-text/jobs/{JOB-ID}?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. | 2023-04-15-preview |
Üst Bilgiler
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key | Bu API'ye erişim sağlayan anahtarınız. |
Yanıt Gövdesi
Yanıt, aşağıdaki parametrelere sahip bir JSON belgesidir
{
"createdDateTime": "2021-05-19T14:32:25.578Z",
"displayName": "MyJobName",
"expirationDateTime": "2021-05-19T14:32:25.578Z",
"jobId": "xxxx-xxxx-xxxxx-xxxxx",
"lastUpdateDateTime": "2021-05-19T14:32:25.578Z",
"status": "succeeded",
"tasks": {
"completed": 1,
"failed": 0,
"inProgress": 0,
"total": 1,
"items": [
{
"kind": "EntityRecognitionLROResults",
"taskName": "Recognize Entities",
"lastUpdateDateTime": "2020-10-01T15:01:03Z",
"status": "succeeded",
"results": {
"documents": [
{
"entities": [
{
"category": "Event",
"confidenceScore": 0.61,
"length": 4,
"offset": 18,
"text": "trip"
},
{
"category": "Location",
"confidenceScore": 0.82,
"length": 7,
"offset": 26,
"subcategory": "GPE",
"text": "Seattle"
},
{
"category": "DateTime",
"confidenceScore": 0.8,
"length": 9,
"offset": 34,
"subcategory": "DateRange",
"text": "last week"
}
],
"id": "1",
"warnings": []
}
],
"errors": [],
"modelVersion": "2020-04-01"
}
}
]
}
}
Kaynakları temizleme
Projenize artık ihtiyacınız kalmadığında, aşağıdaki DELETE isteğiyle silebilirsiniz. Yer tutucu değerlerini kendi değerlerinizle değiştirin.
{Endpoint}/language/authoring/analyze-text/projects/{projectName}?api-version={API-VERSION}
Yer tutucu | Değer | Örnek |
---|---|---|
{ENDPOINT} |
API isteğinizin kimliğini doğrulamak için uç nokta. | https://<your-custom-subdomain>.cognitiveservices.azure.com |
{PROJECT-NAME} |
Projenizin adı. Bu değer büyük/küçük harfe duyarlıdır. | myProject |
{API-VERSION} |
Çağırdığınız API'nin sürümü. Burada başvuruda bulunılan değer, yayınlanan en son sürüme yöneliktir. Diğer kullanılabilir API sürümleri hakkında daha fazla bilgi edinin | 2023-04-15-preview |
Üst Bilgiler
İsteğinizin kimliğini doğrulamak için aşağıdaki üst bilgiyi kullanın.
Anahtar | Değer |
---|---|
Ocp-Apim-Subscription-Key | Kaynağınızın anahtarı. API isteklerinizin kimliğini doğrulamak için kullanılır. |
API isteğinizi gönderdikten sonra başarılı olduğunu belirten bir 202
yanıt alırsınız ve bu da projenizin silindiği anlamına gelir. Başarılı bir arama, işin durumunu denetlemek için kullanılan üst Operation-Location
bilgiyle sonuçlanır.
Sonraki adımlar
Özel yaklaşım analizi modeli oluşturduktan sonra şunları yapabilirsiniz:
Kendi Özel yaklaşım analizi projelerinizi oluşturmaya başladığınızda, modelinizi geliştirme hakkında daha ayrıntılı bilgi edinmek için nasıl yapılır makalelerini kullanın: