FeatureSelectionCatalog.SelectFeaturesBasedOnMutualInformation Yöntem

Tanım

Aşırı Yüklemeler

SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, InputOutputColumnPair[], String, Int32, Int32)

Etiket sütunuyla karşılıklı bilgilerine göre sıralanmış tüm belirtilen sütunlarda en üst k yuvalarını seçen bir MutualInformationFeatureSelectingEstimatoroluşturun.

SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, String, String, String, Int32, Int32)

Etiket sütunuyla karşılıklı bilgilerine göre sıralanmış tüm belirtilen sütunlarda en üst k yuvalarını seçen bir MutualInformationFeatureSelectingEstimatoroluşturun.

SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, InputOutputColumnPair[], String, Int32, Int32)

Etiket sütunuyla karşılıklı bilgilerine göre sıralanmış tüm belirtilen sütunlarda en üst k yuvalarını seçen bir MutualInformationFeatureSelectingEstimatoroluşturun.

public static Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator SelectFeaturesBasedOnMutualInformation (this Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms catalog, Microsoft.ML.InputOutputColumnPair[] columns, string labelColumnName = "Label", int slotsInOutput = 1000, int numberOfBins = 256);
static member SelectFeaturesBasedOnMutualInformation : Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms * Microsoft.ML.InputOutputColumnPair[] * string * int * int -> Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator
<Extension()>
Public Function SelectFeaturesBasedOnMutualInformation (catalog As TransformsCatalog.FeatureSelectionTransforms, columns As InputOutputColumnPair(), Optional labelColumnName As String = "Label", Optional slotsInOutput As Integer = 1000, Optional numberOfBins As Integer = 256) As MutualInformationFeatureSelectingEstimator

Parametreler

catalog
TransformsCatalog.FeatureSelectionTransforms

Dönüşümün kataloğu.

columns
InputOutputColumnPair[]

Dönüştürme için giriş sütunlarının adlarını ve ilgili çıkış sütun adlarını belirtir.

labelColumnName
String

Etiket sütununun adı.

slotsInOutput
Int32

Çıkışta korunacak en fazla yuva sayısı. Korunacak yuva sayısı tüm giriş sütunlarında alınır.

numberOfBins
Int32

Her giriş sütunu ile etiket sütunu arasındaki karşılıklı bilgileri yaklaşık olarak ayarlamak için kullanılan en fazla bölme sayısı. 2'nin gücü önerilir.

Döndürülenler

Örnekler

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class SelectFeaturesBasedOnMutualInformationMultiColumn
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var rawData = GetData();

            // Printing the columns of the input data. 
            Console.WriteLine($"NumericVectorA            NumericVectorB");
            foreach (var item in rawData)
                Console.WriteLine("{0,-25} {1,-25}", string.Join(",", item
                    .NumericVectorA), string.Join(",", item.NumericVectorB));

            // NumericVectorA              NumericVectorB
            // 4,0,6                       7,8,9
            // 0,5,7                       7,9,0
            // 4,0,6                       7,8,9
            // 0,5,7                       7,8,0

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // We define a MutualInformationFeatureSelectingEstimator that selects
            // the top k slots in a feature vector based on highest mutual
            // information between that slot and a specified label. 

            // Multi column example : This pipeline transform two columns using the
            // provided parameters.
            var pipeline = mlContext.Transforms.FeatureSelection
                .SelectFeaturesBasedOnMutualInformation(new InputOutputColumnPair[]
                { new InputOutputColumnPair("NumericVectorA"), new
                InputOutputColumnPair("NumericVectorB") }, labelColumnName: "Label",
                slotsInOutput: 4);

            var transformedData = pipeline.Fit(data).Transform(data);

            var convertedData = mlContext.Data.CreateEnumerable<TransformedData>(
                transformedData, true);

            // Printing the columns of the transformed data. 
            Console.WriteLine($"NumericVectorA            NumericVectorB");
            foreach (var item in convertedData)
                Console.WriteLine("{0,-25} {1,-25}", string.Join(",", item
                    .NumericVectorA), string.Join(",", item.NumericVectorB));

            // NumericVectorA              NumericVectorB
            // 4,0,6                       9
            // 0,5,7                       0
            // 4,0,6                       9
            // 0,5,7                       0
        }

        private class TransformedData
        {
            public float[] NumericVectorA { get; set; }

            public float[] NumericVectorB { get; set; }
        }

        public class NumericData
        {
            public bool Label;

            [VectorType(3)]
            public float[] NumericVectorA { get; set; }

            [VectorType(3)]
            public float[] NumericVectorB { get; set; }
        }

        /// <summary>
        /// Returns a few rows of numeric data.
        /// </summary>
        public static IEnumerable<NumericData> GetData()
        {
            var data = new List<NumericData>
            {
                new NumericData
                {
                    Label = true,
                    NumericVectorA = new float[] { 4, 0, 6 },
                    NumericVectorB = new float[] { 7, 8, 9 },
                },
                new NumericData
                {
                    Label = false,
                    NumericVectorA = new float[] { 0, 5, 7 },
                    NumericVectorB = new float[] { 7, 9, 0 },
                },
                new NumericData
                {
                    Label = true,
                    NumericVectorA = new float[] { 4, 0, 6 },
                    NumericVectorB = new float[] { 7, 8, 9 },
                },
                new NumericData
                {
                    Label = false,
                    NumericVectorA = new float[] { 0, 5, 7 },
                    NumericVectorB = new float[] { 7, 8, 0 },
                }
            };
            return data;
        }
    }
}

Şunlara uygulanır

SelectFeaturesBasedOnMutualInformation(TransformsCatalog+FeatureSelectionTransforms, String, String, String, Int32, Int32)

Etiket sütunuyla karşılıklı bilgilerine göre sıralanmış tüm belirtilen sütunlarda en üst k yuvalarını seçen bir MutualInformationFeatureSelectingEstimatoroluşturun.

public static Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator SelectFeaturesBasedOnMutualInformation (this Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms catalog, string outputColumnName, string inputColumnName = default, string labelColumnName = "Label", int slotsInOutput = 1000, int numberOfBins = 256);
static member SelectFeaturesBasedOnMutualInformation : Microsoft.ML.TransformsCatalog.FeatureSelectionTransforms * string * string * string * int * int -> Microsoft.ML.Transforms.MutualInformationFeatureSelectingEstimator
<Extension()>
Public Function SelectFeaturesBasedOnMutualInformation (catalog As TransformsCatalog.FeatureSelectionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional labelColumnName As String = "Label", Optional slotsInOutput As Integer = 1000, Optional numberOfBins As Integer = 256) As MutualInformationFeatureSelectingEstimator

Parametreler

catalog
TransformsCatalog.FeatureSelectionTransforms

Dönüşümün kataloğu.

outputColumnName
String

dönüştürmesinden kaynaklanan sütunun inputColumnNameadı.

inputColumnName
String

Dönüştürülecek sütunun adı. olarak ayarlanırsa nulldeğeri outputColumnName kaynak olarak kullanılır.

labelColumnName
String

Etiket sütununun adı.

slotsInOutput
Int32

Çıkışta korunacak en fazla yuva sayısı. Korunacak yuva sayısı tüm giriş sütunlarında alınır.

numberOfBins
Int32

Her giriş sütunu ile etiket sütunu arasındaki karşılıklı bilgileri yaklaşık olarak ayarlamak için kullanılan en fazla bölme sayısı. 2'nin gücü önerilir.

Döndürülenler

Örnekler

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class SelectFeaturesBasedOnMutualInformation
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var rawData = GetData();

            // Printing the columns of the input data. 
            Console.WriteLine($"Label             NumericVector");
            foreach (var item in rawData)
                Console.WriteLine("{0,-25} {1,-25}", item.Label, string.Join(",",
                    item.NumericVector));

            // Label                       NumericVector
            // True                        4,0,6
            // False                       0,5,7
            // True                        4,0,6
            // False                       0,5,7

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // We define a MutualInformationFeatureSelectingEstimator that selects
            // the top k slots in a feature vector based on highest mutual
            // information between that slot and a specified label. 
            var pipeline = mlContext.Transforms.FeatureSelection
                .SelectFeaturesBasedOnMutualInformation(outputColumnName:
                "NumericVector", labelColumnName: "Label", slotsInOutput: 2);

            // The pipeline can then be trained, using .Fit(), and the resulting
            // transformer can be used to transform data. 
            var transformedData = pipeline.Fit(data).Transform(data);

            var convertedData = mlContext.Data.CreateEnumerable<TransformedData>(
                transformedData, true);

            // Printing the columns of the transformed data. 
            Console.WriteLine($"NumericVector");
            foreach (var item in convertedData)
                Console.WriteLine("{0,-25}", string.Join(",", item.NumericVector));

            // NumericVector
            // 4,0
            // 0,5
            // 4,0
            // 0,5
        }

        public class TransformedData
        {
            public float[] NumericVector { get; set; }
        }

        public class NumericData
        {
            public bool Label;

            [VectorType(3)]
            public float[] NumericVector { get; set; }
        }

        /// <summary>
        /// Returns a few rows of numeric data.
        /// </summary>
        public static IEnumerable<NumericData> GetData()
        {
            var data = new List<NumericData>
            {
                new NumericData
                {
                    Label = true,
                    NumericVector = new float[] { 4, 0, 6 },
                },
                new NumericData
                {
                    Label = false,
                    NumericVector = new float[] { 0, 5, 7 },
                },
                new NumericData
                {
                    Label = true,
                    NumericVector = new float[] { 4, 0, 6 },
                },
                new NumericData
                {
                    Label = false,
                    NumericVector = new float[] { 0, 5, 7 },
                }
            };
            return data;
        }
    }
}

Şunlara uygulanır