NormalizationCatalog.NormalizeLpNorm Yöntem
Tanım
Önemli
Bazı bilgiler ürünün ön sürümüyle ilgilidir ve sürüm öncesinde önemli değişiklikler yapılmış olabilir. Burada verilen bilgilerle ilgili olarak Microsoft açık veya zımni hiçbir garanti vermez.
Giriş sütunundaki vektörleri birim normunda normalleştiren (ölçekleyen) bir LpNormNormalizingEstimatoroluşturun.
Kullanılan norm türü tarafından norm
tanımlanır. ayarı ensureZeroMean
true
, belirtilen sütunun ortalamasının sıfır vektör olmasını sağlamak için bir ön işlem adımı uygular.
public static Microsoft.ML.Transforms.LpNormNormalizingEstimator NormalizeLpNorm (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase.NormFunction norm = Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase+NormFunction.L2, bool ensureZeroMean = false);
static member NormalizeLpNorm : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase.NormFunction * bool -> Microsoft.ML.Transforms.LpNormNormalizingEstimator
<Extension()>
Public Function NormalizeLpNorm (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional norm As LpNormNormalizingEstimatorBase.NormFunction = Microsoft.ML.Transforms.LpNormNormalizingEstimatorBase+NormFunction.L2, Optional ensureZeroMean As Boolean = false) As LpNormNormalizingEstimator
Parametreler
- catalog
- TransformsCatalog
Dönüşümün kataloğu.
- outputColumnName
- String
dönüştürmesinden kaynaklanan sütunun inputColumnName
adı.
Bu sütunun veri türü, giriş sütununun veri türüyle aynı olacaktır.
- inputColumnName
- String
Normalleştirecek sütunun adı. olarak ayarlanırsa null
değeri outputColumnName
kaynak olarak kullanılır.
Bu tahmin aracı bilinen boyutlu vektörleri Singleüzerinde çalışır.
Her örneği normalleştirmek için kullanılacak norm türü. Sonuçta elde edilen vektörde belirtilen norm bire normalleştirilir.
- ensureZeroMean
- Boolean
ise true
, normalleştirmeden önce her değerden ortalamayı çıkarın ve aksi takdirde ham girişi kullanın.
Döndürülenler
Örnekler
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
namespace Samples.Dynamic
{
class NormalizeLpNorm
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 1, 1, 0, 0} },
new DataPoint(){ Features = new float[4] { 2, 2, 0, 0} },
new DataPoint(){ Features = new float[4] { 1, 0, 1, 0} },
new DataPoint(){ Features = new float[4] { 0, 1, 0, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
var approximation = mlContext.Transforms.NormalizeLpNorm("Features",
norm: LpNormNormalizingEstimatorBase.NormFunction.L1,
ensureZeroMean: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = approximation.Fit(data);
var transformedData = tansformer.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 0.2500, 0.2500, -0.2500, -0.2500
// 0.2500, 0.2500, -0.2500, -0.2500
// 0.2500, -0.2500, 0.2500, -0.2500
// -0.2500, 0.2500, -0.2500, 0.2500
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
}
}
}