TimeSeriesCatalog.DetectEntireAnomalyBySrCnn Yöntem
Tanım
Önemli
Bazı bilgiler ürünün ön sürümüyle ilgilidir ve sürüm öncesinde önemli değişiklikler yapılmış olabilir. Burada verilen bilgilerle ilgili olarak Microsoft açık veya zımni hiçbir garanti vermez.
Aşırı Yüklemeler
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, SrCnnEntireAnomalyDetectorOptions) |
SRCNN algoritmasını kullanarak girişin tamamı için zaman aralığı anomalilerini algılayan öğesini oluşturun Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector. |
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, Double, Int32, Double, SrCnnDetectMode) |
SRCNN algoritmasını kullanarak girişin tamamı için zaman aralığı anomalilerini algılayan öğesini oluşturun Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector. |
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, SrCnnEntireAnomalyDetectorOptions)
SRCNN algoritmasını kullanarak girişin tamamı için zaman aralığı anomalilerini algılayan öğesini oluşturun Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector.
public static Microsoft.ML.IDataView DetectEntireAnomalyBySrCnn (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.IDataView input, string outputColumnName, string inputColumnName, Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetectorOptions options);
static member DetectEntireAnomalyBySrCnn : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.IDataView * string * string * Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetectorOptions -> Microsoft.ML.IDataView
<Extension()>
Public Function DetectEntireAnomalyBySrCnn (catalog As AnomalyDetectionCatalog, input As IDataView, outputColumnName As String, inputColumnName As String, options As SrCnnEntireAnomalyDetectorOptions) As IDataView
Parametreler
- catalog
- AnomalyDetectionCatalog
The AnomalyDetectionCatalog.
- input
- IDataView
DataView'ı girdi.
- outputColumnName
- String
veri işlemesinden kaynaklanan sütunun inputColumnName
adı.
Sütun verileri bir vektördür Double. Bu vektör uzunluğu öğesine bağlı options.DetectMode.DetectMode
olarak değişir.
Yükleme işleminin ayarlarını tanımlar.
Döndürülenler
Örnekler
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectEntireAnomalyBySrCnn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging,
// as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with an anomaly
var data = new List<TimeSeriesData>();
for (int index = 0; index < 20; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
data.Add(new TimeSeriesData { Value = 10 });
for (int index = 0; index < 5; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup the detection arguments
string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// Do batch anomaly detection
var outputDataView = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn(dataView, outputColumnName, inputColumnName,
threshold: 0.35, batchSize: 512, sensitivity: 90.0, detectMode: SrCnnDetectMode.AnomalyAndMargin);
// Getting the data of the newly created column as an IEnumerable of
// SrCnnAnomalyDetection.
var predictionColumn = ml.Data.CreateEnumerable<SrCnnAnomalyDetection>(
outputDataView, reuseRowObject: false);
Console.WriteLine("Index\tData\tAnomaly\tAnomalyScore\tMag\tExpectedValue\tBoundaryUnit\tUpperBoundary\tLowerBoundary");
int k = 0;
foreach (var prediction in predictionColumn)
{
PrintPrediction(k, data[k].Value, prediction);
k++;
}
//Index Data Anomaly AnomalyScore Mag ExpectedValue BoundaryUnit UpperBoundary LowerBoundary
//0 5.00 0 0.00 0.21 5.00 5.00 5.01 4.99
//1 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//2 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//3 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//4 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//5 5.00 0 0.00 0.06 5.00 5.00 5.01 4.99
//6 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//7 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//8 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//9 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//10 5.00 0 0.00 0.00 5.00 5.00 5.01 4.99
//11 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//12 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//13 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//14 5.00 0 0.00 0.07 5.00 5.00 5.01 4.99
//15 5.00 0 0.00 0.08 5.00 5.00 5.01 4.99
//16 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//17 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//18 5.00 0 0.00 0.12 5.00 5.00 5.01 4.99
//19 5.00 0 0.00 0.17 5.00 5.00 5.01 4.99
//20 10.00 1 0.50 0.80 5.00 5.00 5.01 4.99
//21 5.00 0 0.00 0.16 5.00 5.00 5.01 4.99
//22 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//23 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//24 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//25 5.00 0 0.00 0.19 5.00 5.00 5.01 4.99
}
private static void PrintPrediction(int idx, double value, SrCnnAnomalyDetection prediction) =>
Console.WriteLine("{0}\t{1:0.00}\t{2}\t\t{3:0.00}\t{4:0.00}\t\t{5:0.00}\t\t{6:0.00}\t\t{7:0.00}\t\t{8:0.00}",
idx, value, prediction.Prediction[0], prediction.Prediction[1], prediction.Prediction[2],
prediction.Prediction[3], prediction.Prediction[4], prediction.Prediction[5], prediction.Prediction[6]);
private class TimeSeriesData
{
public double Value { get; set; }
}
private class SrCnnAnomalyDetection
{
[VectorType]
public double[] Prediction { get; set; }
}
}
}
Şunlara uygulanır
DetectEntireAnomalyBySrCnn(AnomalyDetectionCatalog, IDataView, String, String, Double, Int32, Double, SrCnnDetectMode)
SRCNN algoritmasını kullanarak girişin tamamı için zaman aralığı anomalilerini algılayan öğesini oluşturun Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector.
public static Microsoft.ML.IDataView DetectEntireAnomalyBySrCnn (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.IDataView input, string outputColumnName, string inputColumnName, double threshold = 0.3, int batchSize = 1024, double sensitivity = 99, Microsoft.ML.TimeSeries.SrCnnDetectMode detectMode = Microsoft.ML.TimeSeries.SrCnnDetectMode.AnomalyOnly);
static member DetectEntireAnomalyBySrCnn : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.IDataView * string * string * double * int * double * Microsoft.ML.TimeSeries.SrCnnDetectMode -> Microsoft.ML.IDataView
<Extension()>
Public Function DetectEntireAnomalyBySrCnn (catalog As AnomalyDetectionCatalog, input As IDataView, outputColumnName As String, inputColumnName As String, Optional threshold As Double = 0.3, Optional batchSize As Integer = 1024, Optional sensitivity As Double = 99, Optional detectMode As SrCnnDetectMode = Microsoft.ML.TimeSeries.SrCnnDetectMode.AnomalyOnly) As IDataView
Parametreler
- catalog
- AnomalyDetectionCatalog
The AnomalyDetectionCatalog.
- input
- IDataView
DataView'ı girdi.
- outputColumnName
- String
veri işlemesinden kaynaklanan sütunun inputColumnName
adı.
Sütun verileri bir vektördür Double. Bu vektör uzunluğu öğesine bağlı detectMode
olarak değişir.
- threshold
- Double
Anomaliyi belirleme eşiği. Belirli bir nokta için hesaplanan SR ham puanı ayarlanan eşikten fazla olduğunda bir anomali algılanır. Bu eşik [0,1] arasında olmalı ve varsayılan değeri 0,3'dür.
- batchSize
- Int32
Giriş verilerini srcnn modeline uyacak şekilde toplu olarak bölün. -1 olarak ayarlandığında, toplu iş yerine modeli sığdırmak için girişin tamamını kullanın, pozitif bir tamsayıya ayarlandığında bu sayıyı toplu iş boyutu olarak kullanın. -1 veya 12'den küçük olmayan pozitif bir tamsayı olmalıdır. Varsayılan değer 1024'dür.
- sensitivity
- Double
Sınırların duyarlılığı, yalnızca srCnnDetectMode AnomalyAndMargin olduğunda kullanışlıdır. [0,100] içinde olmalıdır. Varsayılan değer 99'dur.
- detectMode
- SrCnnDetectMode
sabit listesi türü SrCnnDetectMode. AnomalyOnly olarak ayarlandığında çıkış vektörünün 3 öğeli Çift vektör (IsAnomaly, RawScore, Mag) olması gerekir. AnomalyAndExpectedValue olarak ayarlandığında, çıkış vektörünün 4 öğeli çift vektör (IsAnomaly, RawScore, Mag, ExpectedValue) olması gerekir. AnomalyAndMargin olarak ayarlandığında, çıkış vektörünün 7 öğeli çift vektör (IsAnomaly, AnomalyScore, Mag, ExpectedValue, BoundaryUnit, UpperBoundary, LowerBoundary) olması gerekir. Bir noktanın anomali olup olmadığını saptamak için SR tarafından RawScore çıkışı oluşturulur. AnomalyAndMargin modunda bir nokta anomali olduğunda, duyarlılık ayarına göre bir AnomaliScore hesaplanır. Varsayılan değer AnomalyOnly'dir.
Döndürülenler
Örnekler
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectEntireAnomalyBySrCnn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging,
// as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with an anomaly
var data = new List<TimeSeriesData>();
for (int index = 0; index < 20; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
data.Add(new TimeSeriesData { Value = 10 });
for (int index = 0; index < 5; index++)
{
data.Add(new TimeSeriesData { Value = 5 });
}
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup the detection arguments
string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// Do batch anomaly detection
var outputDataView = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn(dataView, outputColumnName, inputColumnName,
threshold: 0.35, batchSize: 512, sensitivity: 90.0, detectMode: SrCnnDetectMode.AnomalyAndMargin);
// Getting the data of the newly created column as an IEnumerable of
// SrCnnAnomalyDetection.
var predictionColumn = ml.Data.CreateEnumerable<SrCnnAnomalyDetection>(
outputDataView, reuseRowObject: false);
Console.WriteLine("Index\tData\tAnomaly\tAnomalyScore\tMag\tExpectedValue\tBoundaryUnit\tUpperBoundary\tLowerBoundary");
int k = 0;
foreach (var prediction in predictionColumn)
{
PrintPrediction(k, data[k].Value, prediction);
k++;
}
//Index Data Anomaly AnomalyScore Mag ExpectedValue BoundaryUnit UpperBoundary LowerBoundary
//0 5.00 0 0.00 0.21 5.00 5.00 5.01 4.99
//1 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//2 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//3 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//4 5.00 0 0.00 0.03 5.00 5.00 5.01 4.99
//5 5.00 0 0.00 0.06 5.00 5.00 5.01 4.99
//6 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//7 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//8 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//9 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//10 5.00 0 0.00 0.00 5.00 5.00 5.01 4.99
//11 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//12 5.00 0 0.00 0.01 5.00 5.00 5.01 4.99
//13 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//14 5.00 0 0.00 0.07 5.00 5.00 5.01 4.99
//15 5.00 0 0.00 0.08 5.00 5.00 5.01 4.99
//16 5.00 0 0.00 0.02 5.00 5.00 5.01 4.99
//17 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//18 5.00 0 0.00 0.12 5.00 5.00 5.01 4.99
//19 5.00 0 0.00 0.17 5.00 5.00 5.01 4.99
//20 10.00 1 0.50 0.80 5.00 5.00 5.01 4.99
//21 5.00 0 0.00 0.16 5.00 5.00 5.01 4.99
//22 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//23 5.00 0 0.00 0.05 5.00 5.00 5.01 4.99
//24 5.00 0 0.00 0.11 5.00 5.00 5.01 4.99
//25 5.00 0 0.00 0.19 5.00 5.00 5.01 4.99
}
private static void PrintPrediction(int idx, double value, SrCnnAnomalyDetection prediction) =>
Console.WriteLine("{0}\t{1:0.00}\t{2}\t\t{3:0.00}\t{4:0.00}\t\t{5:0.00}\t\t{6:0.00}\t\t{7:0.00}\t\t{8:0.00}",
idx, value, prediction.Prediction[0], prediction.Prediction[1], prediction.Prediction[2],
prediction.Prediction[3], prediction.Prediction[4], prediction.Prediction[5], prediction.Prediction[6]);
private class TimeSeriesData
{
public double Value { get; set; }
}
private class SrCnnAnomalyDetection
{
[VectorType]
public double[] Prediction { get; set; }
}
}
}