LbfgsPoissonRegressionTrainer クラス
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
IEstimator<TTransformer>ポアソン回帰モデルをトレーニングするための値。
public sealed class LbfgsPoissonRegressionTrainer : Microsoft.ML.Trainers.LbfgsTrainerBase<Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.PoissonRegressionModelParameters>,Microsoft.ML.Trainers.PoissonRegressionModelParameters>
type LbfgsPoissonRegressionTrainer = class
inherit LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
Public NotInheritable Class LbfgsPoissonRegressionTrainer
Inherits LbfgsTrainerBase(Of LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer(Of PoissonRegressionModelParameters), PoissonRegressionModelParameters)
- 継承
注釈
このトレーナーを作成するには、 LbfgsPoissonRegression または LbfgsPoissonRegression(Options)を使用します。
入力列と出力列
入力ラベル列データは Single にする必要があります。 入力特徴列データは、既知のサイズの Singleベクターである必要があります。
このトレーナーからは、以下の列が出力されます。
出力列の名前 | 列の型 | 説明 |
---|---|---|
Score |
Single | モデルによって予測された無制限のスコア。 |
トレーナーの特性
機械学習タスク | 回帰 |
正規化は必要ですか? | はい |
キャッシュは必要ですか? | いいえ |
Microsoft.ML に加えて必要な NuGet | なし |
ONNX にエクスポート可能 | はい |
トレーニング アルゴリズムの詳細
ポアソン回帰 は、パラメーター化された回帰メソッドです。 従属変数の条件付き平均の対数は、従属変数の線形関数に従っていることを前提としています。 従属変数がポアソン分布に従うと仮定すると、得られた観測値の可能性を最大にすることで回帰パラメーターを推定できます。
使用例へのリンクについては、「参照」セクションを参照してください。
フィールド
FeatureColumn |
トレーナーが期待する特徴列。 (継承元 TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
トレーナーが期待するラベル列。 できます |
WeightColumn |
トレーナーが期待する重み列。 できます。 |
プロパティ
Info |
IEstimator<TTransformer>ポアソン回帰モデルをトレーニングするための値。 (継承元 LbfgsTrainerBase<TOptions,TTransformer,TModel>) |
メソッド
Fit(IDataView, LinearModelParameters) |
既にトレーニング済 |
Fit(IDataView) |
をトレーニングして返します ITransformer。 (継承元 TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
IEstimator<TTransformer>ポアソン回帰モデルをトレーニングするための値。 (継承元 TrainerEstimatorBase<TTransformer,TModel>) |
拡張メソッド
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
エスティメーター チェーンに 'キャッシュ チェックポイント' を追加します。 これにより、ダウンストリームエスティメーターがキャッシュされたデータに対してトレーニングされます。 複数のデータを受け取るトレーナーが渡す前にキャッシュ チェックポイントを設定すると便利です。 |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
エスティメーターを指定すると、デリゲートを 1 回 Fit(IDataView) 呼び出すラップ オブジェクトが呼び出されます。 多くの場合、エスティメーターが適合した内容に関する情報を返すことが重要です。そのため Fit(IDataView) 、メソッドは一般的 ITransformerなオブジェクトではなく、具体的に型指定されたオブジェクトを返します。 ただし、同時に、 IEstimator<TTransformer> 多くのオブジェクトを含むパイプラインに形成されることが多いため、トランスフォーマーを取得するエスティメーターがこのチェーンのどこかに埋もれる場所を介して EstimatorChain<TLastTransformer> 、推定器のチェーンを構築する必要がある場合があります。 このシナリオでは、このメソッドを使用して、fit が呼び出されると呼び出されるデリゲートをアタッチできます。 |