FastTreeTweedieTrainer Класс
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
Для IEstimator<TTransformer> обучения модели регрессии дерева принятия решений с помощью функции потери Tweedie. Этот тренер представляет собой обобщение Poisson, составной Пуассон и гамма-регрессию.
public sealed class FastTreeTweedieTrainer : Microsoft.ML.Trainers.FastTree.BoostingFastTreeTrainerBase<Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>,Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>
type FastTreeTweedieTrainer = class
inherit BoostingFastTreeTrainerBase<FastTreeTweedieTrainer.Options, RegressionPredictionTransformer<FastTreeTweedieModelParameters>, FastTreeTweedieModelParameters>
Public NotInheritable Class FastTreeTweedieTrainer
Inherits BoostingFastTreeTrainerBase(Of FastTreeTweedieTrainer.Options, RegressionPredictionTransformer(Of FastTreeTweedieModelParameters), FastTreeTweedieModelParameters)
- Наследование
Комментарии
Чтобы создать этот тренер, используйте FastTreeTweedie или FastTreeTweedie(Options).
Входные и выходные столбцы
Входные данные столбца меток должны иметь тип Single. Входные данные столбцов должны быть вектором известного Singleразмера.
Этот алгоритм обучения выводит следующие столбцы:
Имя выходного столбца | Тип столбца | Описание |
---|---|---|
Score |
Single | Несвязанная оценка, прогнозируемая моделью. |
Характеристики тренера
Задача машинного обучения | Регрессия |
Требуется ли нормализация? | Нет |
Требуется ли кэширование? | Нет |
Обязательный NuGet в дополнение к Microsoft.ML | Microsoft.ML.FastTree |
Экспортируемый в ONNX | Да |
Сведения о алгоритме обучения
Модель повышения Tweedie следует математике, установленной в страховом премиум прогнозировании через Градиент Tree-Boosted Tweedie Compound Poisson Models от Yang, Quan и Zou. Общие сведения о повышении градиента и дополнительные сведения см. в статье Википедия: повышение градиента (повышение дерева градиента) или приближение функции Жадности: градиентный компьютер для повышения.
Ознакомьтесь с разделом "См. также" ссылки на примеры использования.
Поля
FeatureColumn |
Столбец признаков, который ожидает тренер. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
GroupIdColumn |
Необязательный столбец groupID, который ожидает тренеры ранжирования. (Унаследовано от TrainerEstimatorBaseWithGroupId<TTransformer,TModel>) |
LabelColumn |
Столбец меток, который ожидает тренер. Может иметь значение |
WeightColumn |
Столбец веса, который ожидает тренер. Может быть |
Свойства
Info |
Для IEstimator<TTransformer> обучения модели регрессии дерева принятия решений с помощью функции потери Tweedie. Этот тренер представляет собой обобщение Poisson, составной Пуассон и гамма-регрессию. (Унаследовано от FastTreeTrainerBase<TOptions,TTransformer,TModel>) |
Методы
Fit(IDataView, IDataView) |
Обучает как обучающие FastTreeTweedieTrainer , так и проверочный данные, возвращает значение RegressionPredictionTransformer<TModel>. |
Fit(IDataView) |
Поезда и возвращается ITransformer. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Для IEstimator<TTransformer> обучения модели регрессии дерева принятия решений с помощью функции потери Tweedie. Этот тренер представляет собой обобщение Poisson, составной Пуассон и гамма-регрессию. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
Методы расширения
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Добавьте "контрольную точку кэширования" в цепочку оценщика. Это обеспечит обучение подчиненных оценщиков на основе кэшированных данных. Рекомендуется создать контрольную точку кэширования перед обучением, которые принимают несколько передач данных. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Учитывая оценщик, возвращает объект-оболочку, который будет вызывать делегат один раз Fit(IDataView) . Часто важно, чтобы оценщик возвращал сведения о том, что было в форме, поэтому Fit(IDataView) метод возвращает специально типизированный объект, а не просто общий ITransformer. Однако, в то же время, IEstimator<TTransformer> часто формируются в конвейеры со многими объектами, поэтому нам может потребоваться построить цепочку оценщиков, где EstimatorChain<TLastTransformer> оценщик, для которого мы хотим получить преобразователь, похоронен где-то в этой цепочке. В этом сценарии мы можем подключить делегат, который будет вызываться после вызова соответствия. |